<u>Functional role of resistance</u> components to prevent tuber blight

A. Evenhuis, P.J. van Bekkum & G.J.T. Kessel

Outline

Objective
Cortex Resistance
Lesion Growth Rate
Infection Efficiency
General discussion & conclusions

This research is financed by: Ministry of Agriculture, Nature and Food quality, HPA and Agrochemical industry

Objective

Use resistance components to predict the possibility of fungicide dose rate reduction

 Collect data of resistance components to tuber infection of different cultivars

Decision rules to prevent tuber infection

- To avoid tubers as primary inoculum source
- Reduce environmental impact and possibly fungicides amounts used

Requirements for tuber infection

Foliage infection

- Variety
- Weather conditions
- Spray schedule
- Sporulation
 - Survival of sporangia
- Wash down of sporangia to the ridge
 - Rain duration
 - Rain intensity

Requirements for tuber infection

Survival of spores

- On the soil
- In the ridge
- Soil type
- Infection of tubers
 - Cultivar resistance to tuber blight
 - Vulnerability to tuber infection in time
- Carry over of inoculum

M&M (I) Resistance components

Cortex resistance

- Specified at end growing season
 - 2005: 6 cultivars
 - 2006: 15 cultivars
 - Phytophthora isolates: IPO98014, IPO428-2, mixture of 15 isolates
- Index (0-3)
- % necrotic tissue

Cortex resistance

Conclusions

- Some varieties do not sustain spreading lesions
- Tuber infection remains localized in Kartel and Seresta
 - Maybe with less aggressive isolates the infection will stay localized in more varieties
- In general lesion spread is more limited in starch potatoes than in ware potatoes

M&M (II) Infection efficiency (IE)

- During growing season & storage
 - 12 sampling dates
 - 6 cultivars
 - IP098014 & IP0428-2
- At the end of the growing season 2006
 - 15 main cultivars
 - IPO98014, IPO428-2 & Mixture of 15 isolates

Cultivar resistance to tuber blight during 2005/2006

Ratings national list & tuber blight (laboratory)

Relation between infection of tubers and tuber resistance rating (linear: $R^2 = 0.27$)

Relation between infection of tubers and leaf resistance rating (Exponential; $R^2 = 0.66$)

Conclusions

Physiology of the tuber affects tuber blight infection.

- Harvest
- End of storage
- Order of varieties in time seems to remain the same during the season
- Correlation between ratings of the national list and final disease score was poor
 - Kartel performed better than expected
 - Ostara worse

M&M (IV) Field experiments Lelystad

5 years: 2002 – 2006

- Foliar: reduced dose rates Shirlan (2002-2004)
 - Polycyclic field experiments with spreader rows
- Tuber: reduced dose rates Shirlan (2005-2006)
 - Polycyclic field experiments with spreader rows

Tuber blight

Conclusions

 Beware of the isolate used when testing resistance ratings

- Preferably tests should be run with new modern isolates
- A mixture of isolates is an option
- At least an aggressive isolate should be chosen to simulate worst case scenario's
- Very low tuber blight ratings in the laboratory seems to coincide with low tuber blight incidence in the field.
 - Dose rate reduction seems to be possible only with those varieties

Thank you for your attention!

Acknowledgments: T. van den Bosch, M. Förch, M. Holdinga, H. van Raaij, H. Spits, A. Clerkx, P. Kastelein & M. de Klein

© Wageningen UR

