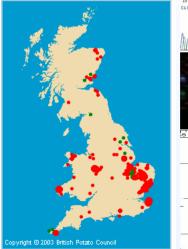
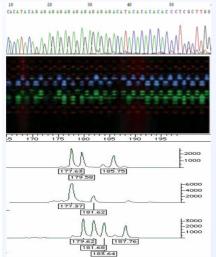
Survey of 2006 Blight populations

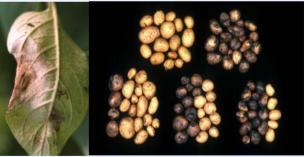
David Cooke

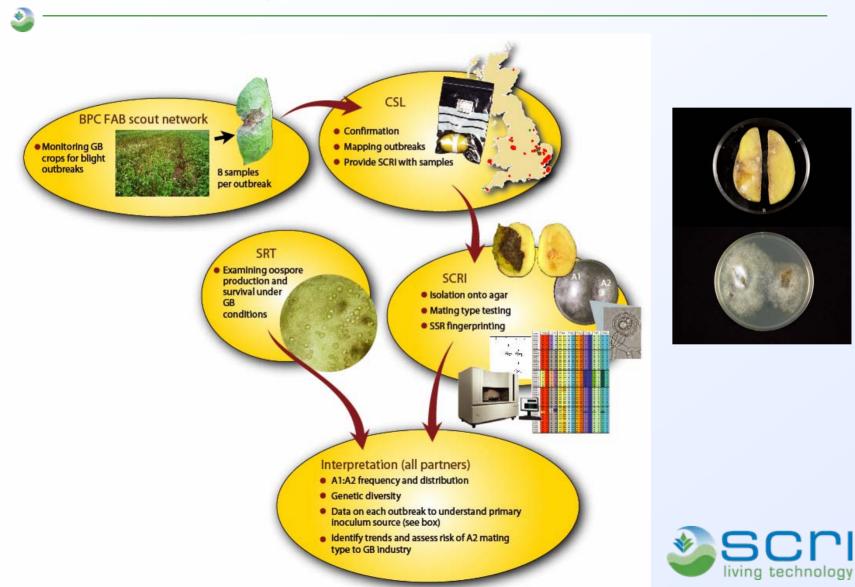
Alison Lees Naomi Williams Louise Sullivan Summer students


Moray Taylor CSL

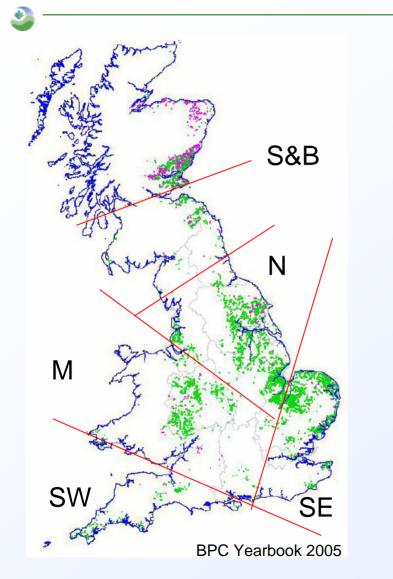

Nick Bradshaw ADAS Ruairidh Bain SAC

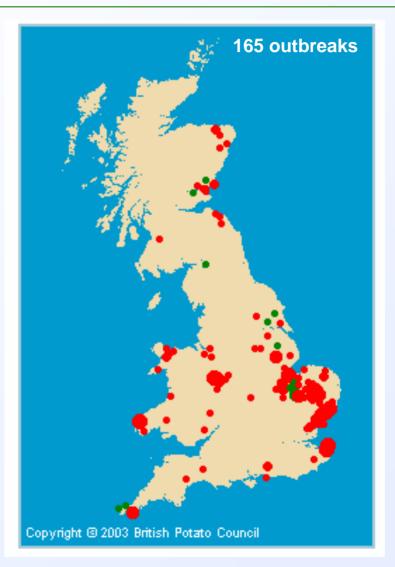
David Shaw SRT


SCOUTS

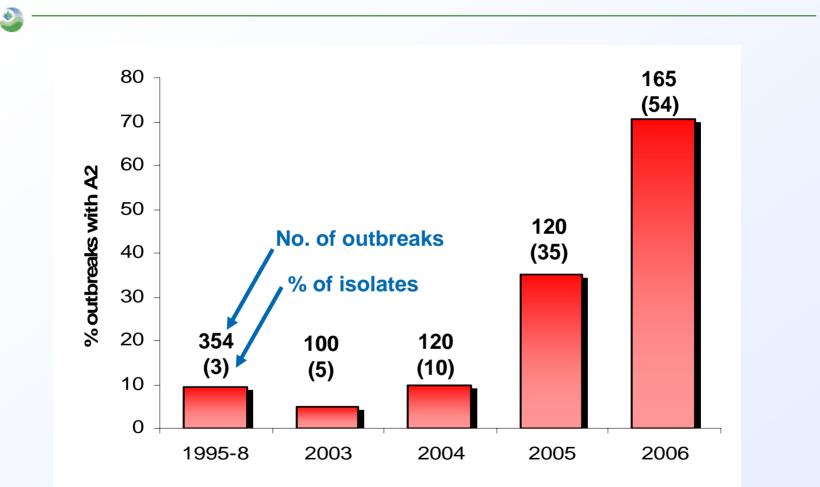


Project aims


- 1. Determine levels of A2 mating type of *P. infestans* in 2006, 2007 and 2008 potato crops in GB.
- 2. Examine specific early outbreaks to determine the likely source of inoculum with particular emphasis on the roles of oospores and seed-borne blight over the 2006, 2007 and 2008 seasons.
- **3.** Determine genetic diversity of GB *P. infestans* populations in 2006, 2007 and 2008 seasons and compare to that in previous years and other states.
- 4. Analysis of oospore production and survival under GB conditions.
- 5. Assess the implications of and risks arising from the observed *P. infestans* population structure and oospore prevalence and survival (incorporating information from other studies).



Project Outline (2006-8)

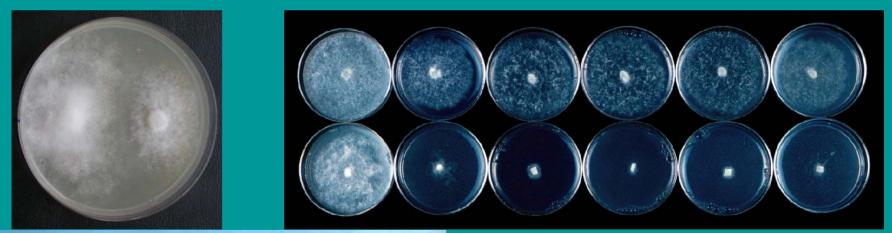


Sample distribution

2006: A2 increased

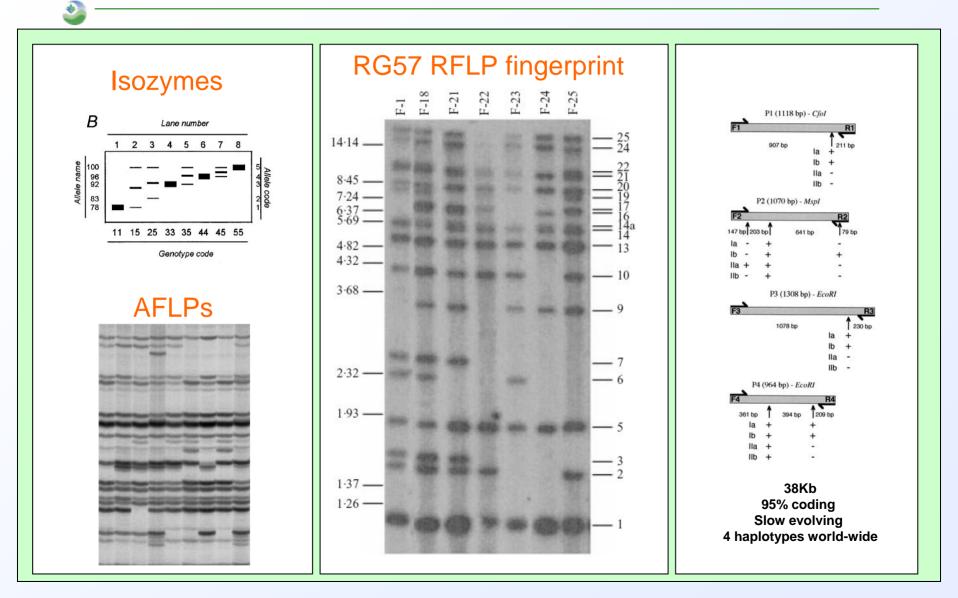
22% of outbreaks of mixed mating type SCC

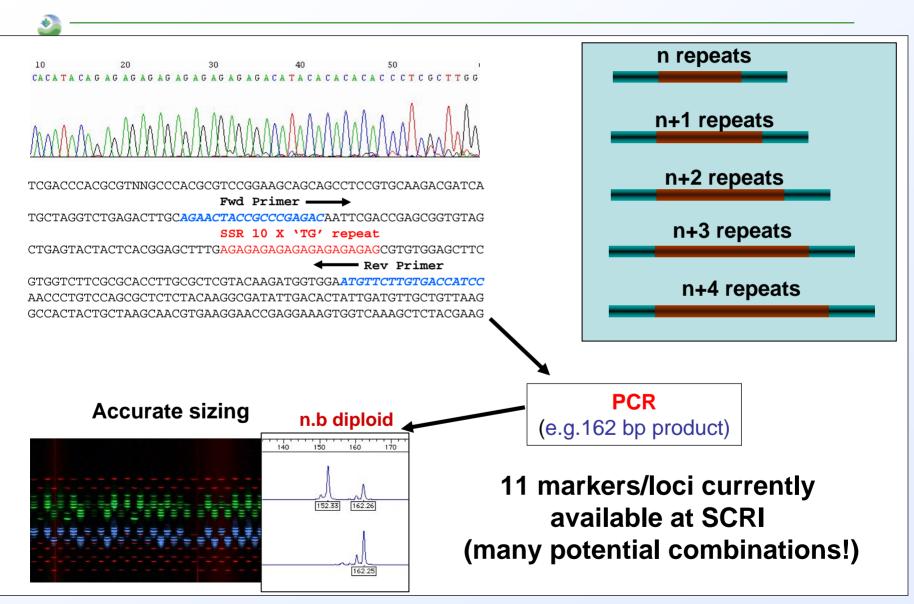
Questions raised


- More detail on the A2
 - When and where has change occurred?
 - One type of A2 or a range?
 - Why the increase (mutation fungicide $R \uparrow$ aggressive)?
- Is it only the A2 type that's changed?
- Origins ?
 - Seed?
 - Airborne?
 - Populations in other EU countries?
- Implications ?
 - Risk of oospore formation?
 - Evidence of oospores & early outbreaks?
 - Host resistance breakdown?
 - Fungicide efficacy?
 - Increase in diversity?

Phenotypic Markers

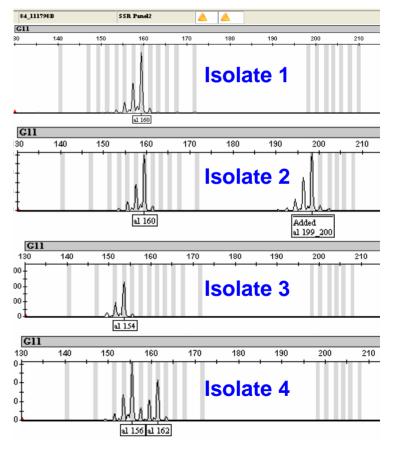
- Mating type
- Fungicide resistance
- Virulence


Insufficient features to discriminate isolates to detail needed Time consuming Expensive



Tools for estimating genetic diversity

Simple Sequence Repeats

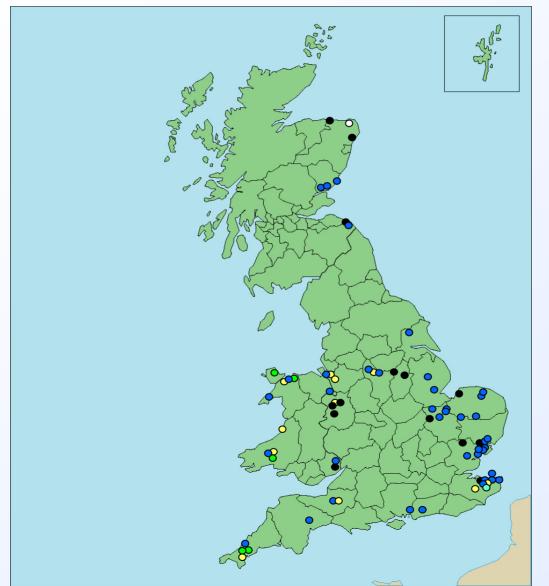


Genotypic marker – Simple Sequence Repeats

ABI 3730 capillary sequencer

		A	в	C	D	E	F	G	н		J	к	L	M	N	0	P	Q	B	S	т	U	V	W	×	Y
	1																									
	2	isolate	Pi	02	G	11	Pi	33	Pi	16	Pi	04	Pi₄	4B	Pi∜	56	Pi	63	Pi	66	Pi	70	Pi	89	D	13
	3	03.01.1.2	162	162	156	162	203	203	176	178	166	170	205	217	176	176	157	157	228	230	192	192	179	181	136	136
	4	03.01.3.1	162	162	156	162	203	203	176	178	166	170	205	217	176	176	157	157	228	230	132	132	179	181	136	136
	5	03.01.3.2	162	162	156	162	203	203	176	178	16.6	170	205	217	176	176	157	157	228	230	132	132	17.9	181	136	136
	6	03.01.3.3	162	162	156	162	203	203	176	178	16.6	170	205	217	176	176	157	157	228	230	132	132	17.9	181	136	136
	7	03.01.4.1	162	162	156	162	203	203	176	178	16.6	170	205	217	176	176	157	157	228	230	192	192	17.9	181	136	136
	8	03.01.4.3	162	162	156	162	203	203	176	178	166	170	205	217	176	176	157	157	228	230	192	192	179	181	136	136
	9	03.01.5.2	162	162	156	162	203	203	176	178	166	170	205	217	176	176	157	157	228	230	192	192	179	181	136	136
1	10	03.02.1.2	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136
1	11	03.02.2.2	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136
1	12	03.02.2.3	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136
1	13	03.02.3.1	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136
1	14	03.02.4.1	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	132	132	179	181	118	136
1	15	03.02.4.3	162	162	166	166	203	203	176	178	16.6	170	205	217	176	176	151	157	228	228	132	132	17.9	181	118	136
1		03.02.5.1	162	162	166	166	203	203	176	178	16.6	170	205	217	176	176	151	157	228	228	132	132	17.9	181	118	136
1	17	03.02.5.2	162	162	166	166	203	203	176	178	16.6	170	205	217	176	176	151	157	228	228	192	192	17.9	181	118	136
1	18	03.02.5.3	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	17.9	181	118	136
1	19	03.03.1.1	152	162	154	156	203	203	176	178	166	170	217	217	174	176	14.8	151	228	230	192	195	179	179	136	136
2	20	03.03.1.2	152	162	154	156	203	203	176	178	166	170	217	217	174	176	14.8	151	228	230	192	195	179	179	136	136
2	21	03.03.1.3	152	162	154	156	203	203	176	178	166	170	217	217	174	176	14.8	151	228	230	192	195	179	179	136	136
	22	03.03.2.2	152	162	154	156	203	203	176	178	166	170	217	217	174	176	148	151	228	230	192	195	179	179	136	136
2	23	03.03.2.3	152	162	154	156	203	203	176	178	166	170	217	217	174	176	14.8	151	228	230	192	135	179	179	136	136
	24	03.03.3.1	152	162	154	156	203	203	176	178	166	170	217	217	174	176	14.8	151	228	230	132	135	173	173	136	136
		03.03.3.2	152	162	154	156	203	203	176	178	166	170	217	217	174	176	14.8	151	228	230	132	135	173	173	136	136
2	26	03.03.3.3	152	162	154	156	203	203	176	176	166	170	217	217	174	176	14.8	151	228	230	132	135	173	173	136	136
	27	03.04.1.1	162	162	166	166	203	206	176	178	166	170	205	217	176	176	151	157	228	228	192	192	17.9	181	118	136
	28	03.04.1.2	162	162	166	166	203	206	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136
2	29	03.04.2.1	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	132
3	30	03.04.2.2	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136
	31	03.04.3.1	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	132
	32	03.04.3.3	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	132
3	33	03.04.4.1	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	132
	34	03.04.5.2	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	157	228	228	192	132	173	181	118	136
3	35	03.04.5.3	162	162	166	166	203	203	176	178	166	170	205	217	176	176	151	151	228	228	132	132	173		118	136
		03.17.1.2	162	162	166	166	203	206	176	178	166	170	205	217	176	176	151	157	228	228	192	192	175	181	118	136
		03.17.2.1	162	162	162	168	203	206	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136
		03.17.2.2	152	162	154	156	203	203	176	178	166	170	217	217	174	176	148	151	228	228	192	195	179	179	136	136
3	39	03.17.2.3	162	162	166	166	203	206	176	178	166	170	205	217	176	176	151	157	228	228	192	192	179	181	118	136

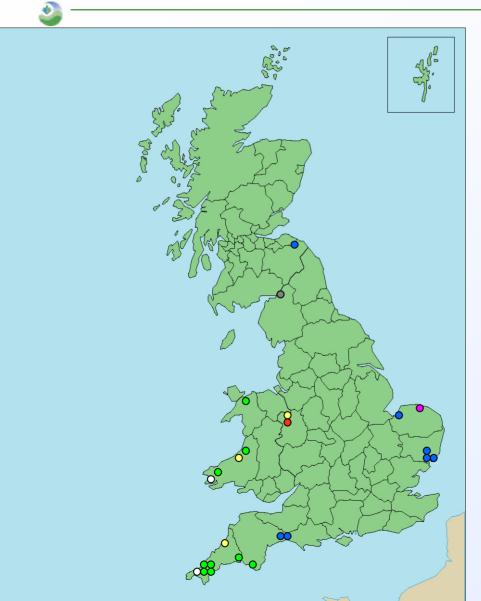
Marker G11


RG57 and SSR results do match

÷

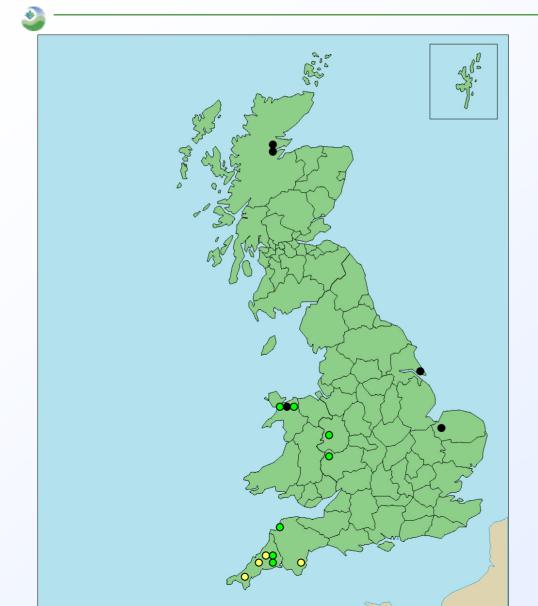
SSR	RG57																								
type	type		Pi02	Pi02	D13	D13	Pi33	Pi33	Pi04	Pi04	Pi4B	Pi4B	Pi16	Pi16	G11	G11	G11	Pi56	Pi56	Pi63	Pi63	Pi70	Pi70	Pi89	Pi89
13_A2	blue	A2	160	162	136	154	203	203	166	170	205	213	176	178	154	160	0	174	176	151	157	192	192	179	179
3_A2	green	A2	162	162	118	136	203	203	166	170	213	213	176	178	154	160	0	176	176	148	157	192	195	179	179
10_A2	yellow	A2	162	162	136	136	203	203	166	170	213	217	178	178	162	208	0	176	176	151	157	192	192	181	181
22_A2	RF40	A2	162	162	136	136	203	203	166	170	213	217	176	178	140	156	162	174	176	151	157	192	195	179	181

Spatial distribution of A2 types: 2006


Most of increase relates to blue type

- Long present in GB and increased in frequency?
- A mutation of an existing clone?
- Recent entry via seed, airborne spores or other means?

Spatial distribution of A2 types: 2005 //



		/		
		Date of	mt	
Postcode	County	receipt	DNA	
PE31	Norfolk	19/07/2005	Ia	
TD11	ScottishBorders	22/08/2005	Ia	
TA13	Somerset	19/07/2005	Ia	
TA12	Somerset	27/07/2005	Ia	
IP12	Suffolk	18/08/2005	Ia	
IP12	Suffolk	23/08/2005	Ia	
IP12	Suffolk	31/08/2005	Ia	
TR12	Cornwall	23/05/2005	Ia	
TR12	Cornwall	21/06/2005	Ia	
TR2	Comwall	04/07/2005	Ia	
TR27	Cornwall	07/07/2005	Ia	
PL11	Cornwall	26/08/2005	Ia	
TQ7	Devon	20/07/2005	Ia	
SY23	Ceredigion	12/07/2005	Ia	
SA73	Pembrokeshire	08/06/2005	Ia	
SA48	Ceredigion	21/07/2005	Iia	
PL30	Cornwall	21/07/2005	Iia	
SY4	Shropshire	04/07/2005	Iia	
SY4	Shropshire	04/07/2005	Iia	
NR11	Norfolk	04/07/2005	Iia	
CA6	Cumbria	14/07/2005	Iia	
SA73	Pembrokeshire	22/06/2005	Ia	
AB45	Banffshire	21/09/2005	***	

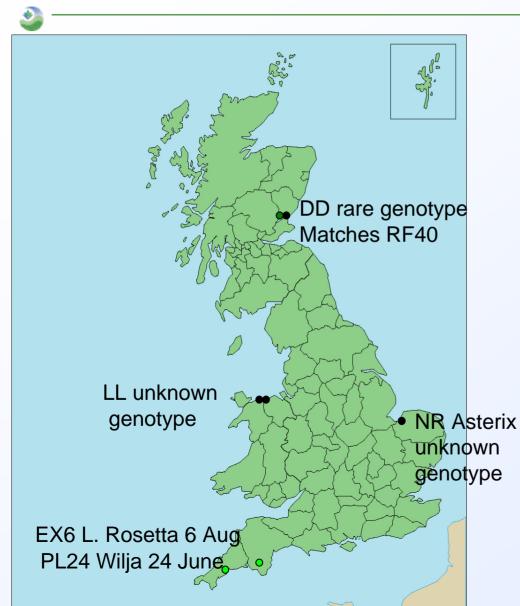
Seed? Cultivars

M. Piper, M. Peer, Carlingford(x2), Unknown, Estima(x2), Morene

Spatial distribution of A2 types: 2004

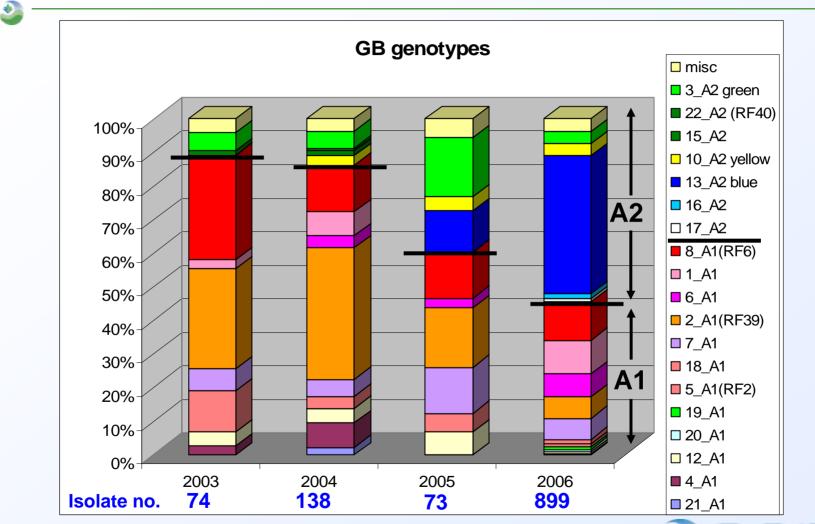
Green

HR9	Piper	8 Aug
TF10	Piper	28 Aug
TR14	Marfona	30 Jul
TR4	Caesar	9 Aug
EX39	Wilja	27 Aug
LL61	I. of Skye	12 Aug
LL57	Unkn	16 Aug


Yellow

TR14	Marfona	a 30 Jul
TR11	L. Rose	tta 19 Aug
EX7	Cara	3 Sept
TR9	Unkn	13 Sept

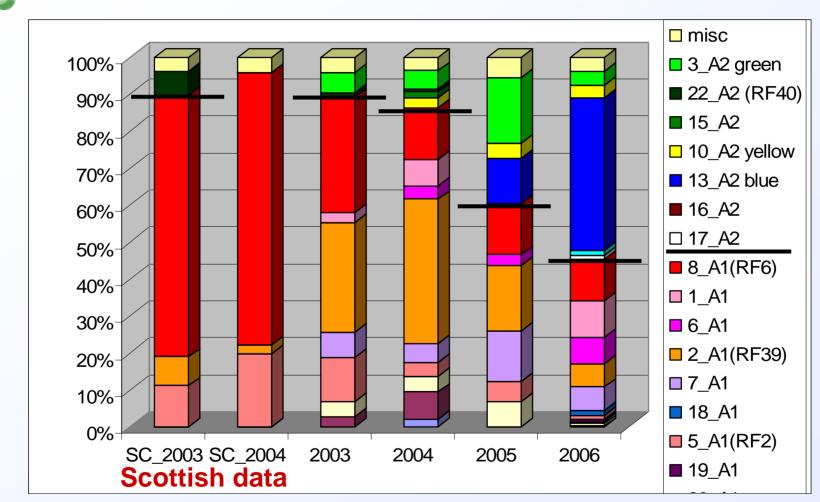
Misc


HU12	Dell	31 Aug
IV11	K.Pink	20 Jul
IV8	K. Pink	26 July
LL53	A Blue	30 July
NR11	Piper	5 Aug
	NO BLUE	

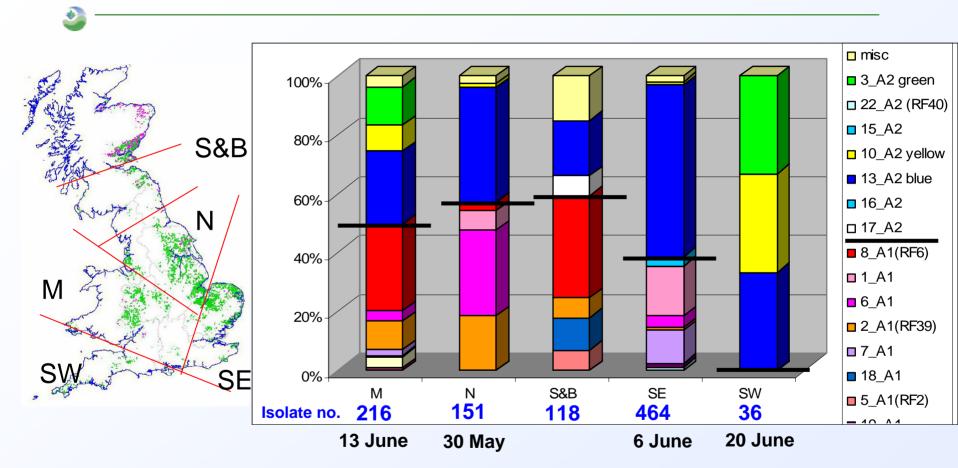
Spatial distribution of A2 types: 2003

A2 type that was present in 1990s (RF40) has decreased dramatically

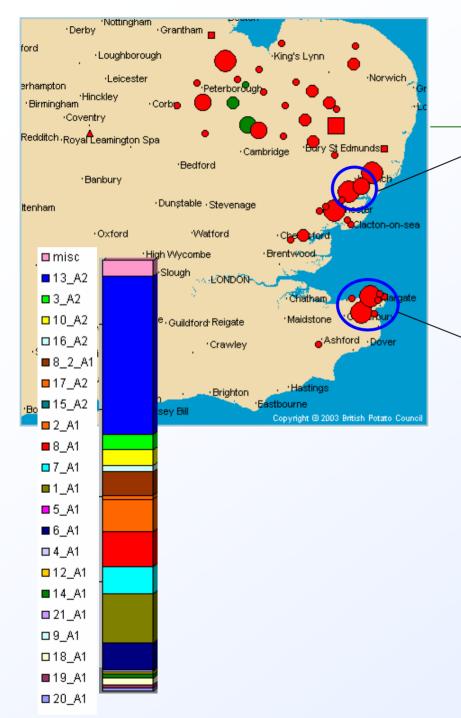
Overview of A1 and A2 genotypes (03-06)



- Data suggest GB arrival in 2005
- A2 has been increasing across Netherlands and Northern France in recent years
- More detail will come when Eucablight project database is populated with more SSR data


Scottish crops did not contribute new A2s

÷



Regional breakdown of 2006 data

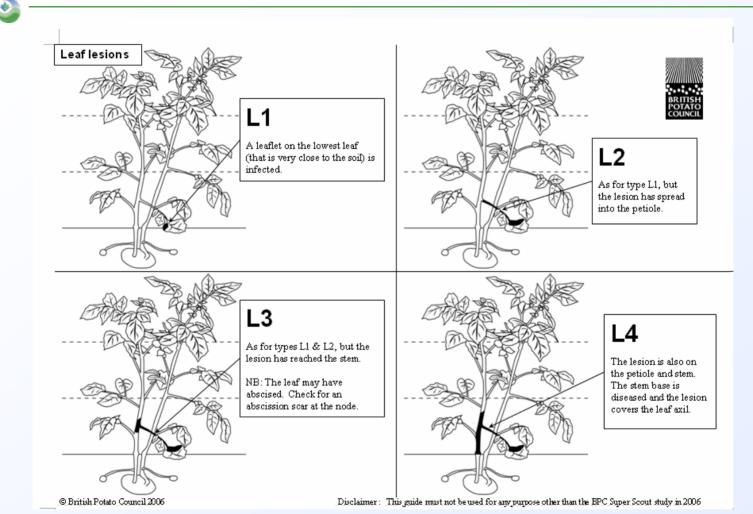
S&B blue - all very late (Sept 16th onwards)

ID	Outbreak size	Yariety	Reported	Source	Area	A1	A2
3940	Patch (1m2)	Maris Piper	07-Jun-06	Crop/Other	IPB		
3364	Patch (1m2)	King Edward	07-Jun-06	Crop/Other	IP9		
3952	Scattered through field	Estima	07-Jun-06	Crop/Other	IP10		Õ
4112	Scattered through field	Estima	19-Jun-06	Crop/Other	IPB		•
4152	Patch (1m2)	Romano	23-Jun-06	Crop/Other	IP9		
4176	Several Patches	Estima	27-Jun-06	Crop/Other	IP9		0
4164	Single Plant	Charlotte	27-Jun-06	Crop/Other	IP10		
4168	Single Plant	Charlotte	27-Jun-06	Crop/Other	IP10	0	Ō
4204	Scattered through field	Other Maincrop	29-Jun-06	Crop/Other	IPB		Ŏ

ID	Outbreak size	Yariety	Reported	Source	Area	A1	A2	
3872	Patch (1m2)	Unknown	10-May-06	Outgrade Pile	CT1			T
3876	Several Patches	Unknown	11-May-06	Outgrade Pile	стт			
3932	Several Patches	Maris Peer	06-Jun-06	Crop/Other	CT12		•	
3928	Several Patches	King Edward	06-Jun-06	Crop/Other	стт		•	
3968	Scattered through field	King Edward	07-Jun-06	Crop/Other	тт		•	
3972	Scattered through field	Marfona	07-Jun-06	Crop/Other	тт		•	
3992	Scattered through field	Other Maincrop	08-Jun-06	Crop/Other	CT10		0	
4004	Single Plant	King Edward	08-Jun-06	Crop/Other	CT6			I
3988	Several Patches	Desiree	08-Jun-06	Crop/Other	тт		•	SS3
3996	Single Plant	King Edward	08-Jun-06	Crop/Other	стэ			I
4228	Scattered through field	Other Maincrop	04-Jul-06	Crop/Other	стз		\bigcirc	
4268	Patch (1m2)	Desiree	07-Jul-06	Outgrade Pile	СТЗ		0	
4272	Scattered through field	Desiree	07-Jul-06	Crop/Other	стз		0	Ĩ
4276	Scattered through field	King Edward	07-Jul-06	Crop/Other	стт			
4360	Very Severe	King Edward	21-Jul-06	Crop/Other	СТЗ			
4368	Scattered through field	Estima	24-Jul-06	Crop/Other	стз		0	

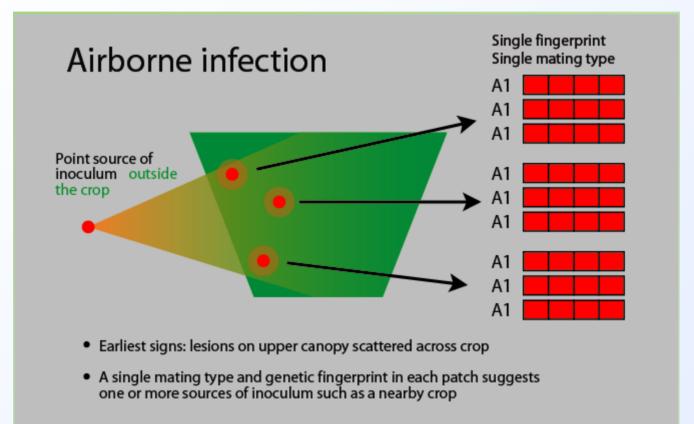
The search for oospores: 'Superscout' – objectives and methods

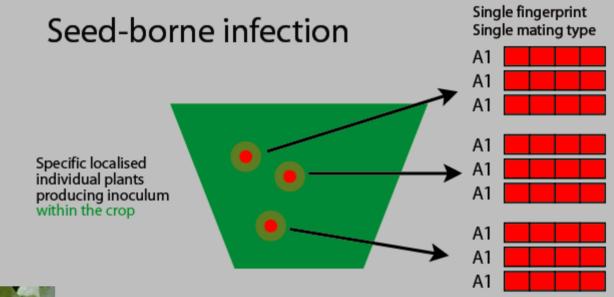
- Targeted outbreak sampling: early stage of development.
- 16 Superscouts nominated and 'trained'
- Intensive sampling and recording (up to 32 lesions)
- Determine inoculum source from outbreak data


Lesion type – stem or leaf and stage of development, mosaic-like symptoms Lesion position in canopy- especially lesions at soil level (ASL) Nature of outbreak – number of foci, wind direction, plant height

Analysis of resultant isolates

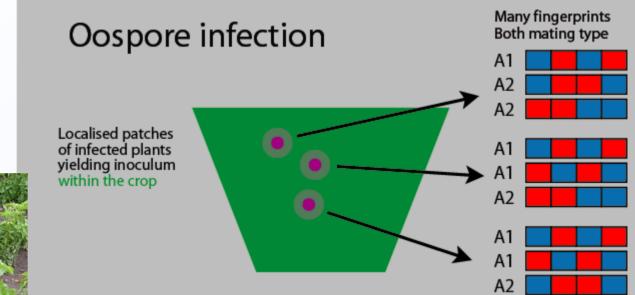
Mating type DNA fingerprinting


Lesion guide


'Superscout' – interpretation (1)

5

'Superscout' – interpretation (2)



- Earliest signs: Isolated single infected plants; disease developing on the lower canopy first, perhaps with stem lesions.
- A single mating type and genetic fingerprint on each plant suggests a single source of inoculum such as disease in the seed crop

Ruairidh Bain

'Superscout' - interpretation (3)

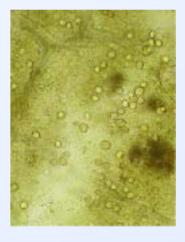
- Earliest signs: Localised severe disease; maybe early in Season; developing on the lower canopy first
- A mixture of mating types and many different genetic fingerprints is strong evidence of oospore-borne infection

Hansen & Bodker

Andersson

'Superscout' – findings

- 8 outbreaks sampled
 5 June to 18 July
 6-32 isolates per outbreak
 Cambs, Kent, Shropshire, Aberdeenshire, Suffolk, Norfolk
- Value of fingerprint data in determining outbreak source


						1.4	4.01				- 1			_				_			_	_					_										
CT7		Dosiroo	1	1	Α	LI		06_553_01													_																
CT7	A1	Desiree	1	1	в	L1	ASL	06_553_02	16.0	162	0	136	136 0	203	203	0	166	170	0	213	217	0	0	0	140	162	0	176	176	148	157	0	192	192	179	195	199
CT7	A1	Desiree	1	2	A	L1	ASL	06_553_03	16.0	162	0	136	136 0	203	203	0	166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	181	197	199
CT7	A1	Dosiroo	1	2	в	L1	в	06_553_04	160	162	0	136	136 0	203	203	0	166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	181	197	199
CT7	A1	Dosiroo	1	3	в	L1	В	06_553_05	160	162	0	136	136 0	203	203	0	166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	181	197	199
CT7	A1	Desiree	1	3	A	L1	ASL	06_553_06	160	162	0	136	136 0	203	203	0	166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	179	195	199
CT7	A1	Dosiroo	2	1	в	LI	ASL	06_553_07	160	162	0	136	136 (203	203		166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	181	197	199
CT7	A1	Dosiroo	2	1	A	L1	ASL	06_553_08	160	162	0	136	136 0	203	203	0	166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	181	197	199
CT7		Dosiroo	2	2	в	L1	в	06_553_09																													
CT7		Dosiroo	2	2	A	L1	ASL	06_553_10																													
CT7	A1	Dosiroo	3	1	в	L1	ASL	06_553_11	160	162	0	136	136 0	203	203		166	170	0	213	217	0	178	178	140	162	0	0	0	148	157	0	192	192	179	195	199
CT7	A1	Dosiroo	3	1	A	L1	в	06_553_12	160	162	0	136	136 0	0	0	0	166	170	0	213	217	0	0	0	140	162	0	176	176	148	157	0	192	192	179	195	199
CT7	A1	Dosiroo	3	2	A	L1	в	06_553_13	160	162	0	136	136 0	203	203	0	166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	179	195	199
CT7	A1	Desiree	3	2	в	L1	в	06_553_14	160	162	0	136	136 0	203	203	0	166	170	0	213	217	0	178	178	140	162	0	176	176	148	157	0	192	192	179	195	199
CT7	A2	Dosiroo	4	1	в	LI	ASL	06_553_15	160	162	0	136	154 (203	203		166	170	0	205	213	0	176	178	154	16.0	- 0 -	174	176	151	157	0	192	192	179	179	0
CT7	A2	Dosiroo	4	1	A	S4	M	06_553_16	160	162	0	136	154 0	203	203	0	166	170	0	205	213	0	176	178	154	16.0	0	174	176	151	157	0	192	192	179	179	0
CT7	A2	Desiree	4	2	в	L1	ASL	06_553_17	160	162	0	136	154 0	203	203	0	166	170	0	205	213	0	176	178	154	16.0	0	174	176	151	157	0	192	192	179	179	0
CT7	A2	Desiree	4	2	A	L1	ASL	06_553_18	160	162	0	136	154 0	203	203	0	166	170	0	205	213	0	176	178	154	16.0	0	174	176	151	157	0	192	192	179	179	0

Given oospore threat - continuing into 2007

Oospore biology (SRT, Bangor)

- Blight epidemics with dominant A1 and A2 genotypes to be established in polytunnels
- Leaves examined for presence of oospores
- Diseased foliage allowed to rot into soil
- Soil sampled to monitor oospore germination
- Soil stored to monitor oospore longevity
- Outbreaks in subsequent crops sampled
- Samples fingerprinted at SCRI to monitor whether inoculum sexual or asexual

Conclusions and future work

- The GB *P. infestans* population is in flux (both A1 and A2)
- Predominantly clonal populations to date perhaps due to rotations?
- Risk of oospore formation continues to increase along with threat of early epidemics and more rapid pathogen adaptation
- Increase in aggressiveness?
 This is implied but impact on prediction (DSS) & control not known
- Impact on resistance ratings?
 IVT & breeders need to be using contemporary isolates
- Impact on efficacy of current fungicide programmes? fungicide testing needs to be against contemporary isolates

