Eucablight – pathogen database update

David Cooke

Björn Andersson Jozsef Bakonyi Jens Grønbech Hansen Poul Lassen Alison Lees All data submitters

Overview

- Eucablight project summary
- Data updates
- New version of P.exe
- Updates on SSR methodology
- Future plans & Funding Main challenges – expansion, momentum, relevance, funding & publications

"... establish a **comprehensive network** on the population biology of *P.infestans* across Europe'

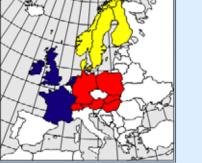
WP2

Collect and collate data (pheno and genotype) on existing/past

WP4

Collate and review existing methods for assessing variation in *P*. 4.1 infestans populations and to test, standardise and publish these methods in a www database

To create a European isolate database detailing existing data on isolate 4.2 variation using new data as assessed by the methods developed in Objective 4.1


4.3 **Training** course on agreed and adopted methods

Pan-European **interpretation** of changing population structure in *P*. 4.4 infestans

WP5

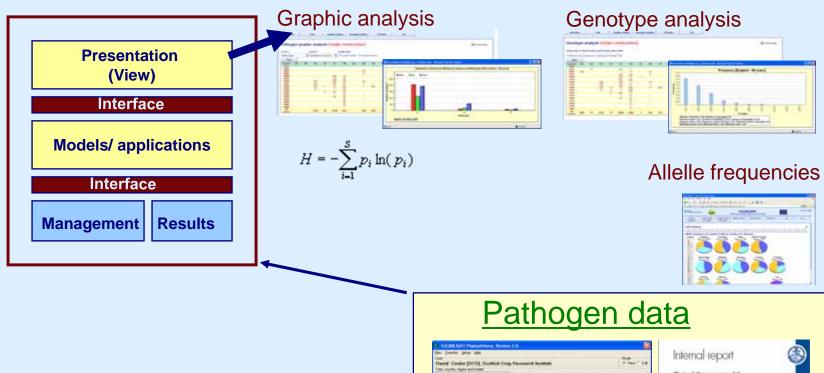
Integration of all derived data to benefit of control strategies

Main aims of pathogen section of Eucablight project

WP1

P infestans collections

Linking *P. infestans* biology and blight management



- 1. Where, when and how blight infection starts
 - primary inoculum
- 2. Rate of infection and spread
 - o foliar
 - o tuber
- 3. Control options
 - o fungicide efficacy
 - host resistance stability
 - **DSS**
- 4. Survival
 - cull piles/seed
 - volunteers
 - o solanaceous weeds
 - soil oospores
- 5. Changing pathogen population
 - Immigration
 - **o** Evolution mutation & recombination

Integration of all data into practical management advice

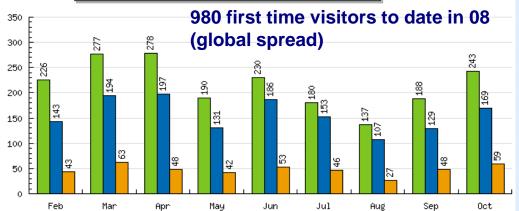
euca Phytophthora.exe and dataflow

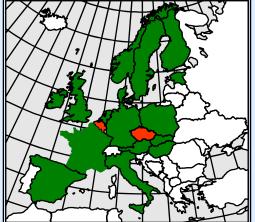
50+ database fields behind each isolate entered into the database = wealth of data to be mined.

Appen	SCHAR.13 Terresultan INFO (URL) (URL) (URL) Terresultan Accessible URL) (URL) (URL) (URL) Terresultan Terresultan URL) Terresultan URL) Terres	Rystophthoraces ver J.O Research for the takings will also for Apsychose enterests holder behaviors to the UKABIGH database for manad methods to the second second second second second second second second second second second second second second
	ora.exe	Faceby of Argelischural Sciences

Timeline

03-06	Project funded (i.e. no € Jan 06 onwards)
Apr 07	Discussed revisions needed for P.exe in S. America
Merging	g of Eucablight and EU.ICP.NET to Euroblight
May 07	Bologna – planned new version of P.exe
July 07	Shut down P.exe 1.3 until version 2.0 launched
Feb 08	Launch of P.exe 2.0 for Europe & S & C America improved data transfer, expandable to other regions, additional features such as DNA sequence data, more user friendly
Mar 08	P.exe training course and presentation at GILB meeting in Beijing – general support for system "CIP's directors recognize the power of such an approach and support the expansion of the system"
Oct 08	Training in Chile – agreement for data entry




Pathogen data overview

www.eucablight.org

Tallinn	12,300	Pathogen overview Select one or more traits and press the show button. Help Mating type Metalaxyl resistance Aggressiveness Virulence mtDNA AFLP Isozyme SSR All Show Country AT BE CZ DE DK EE EN ES FI FR HU IE IT MA ND NL NO PE PL SC SE SK WA All																4								
Oct 2005																										
		Country Year	AT	BE	CZ	DE	DK	EE	EN	ES	FI	FR	HU	IE	IT	MA	ND	NL	NO	PE	PL	SC	SE	SK	WA	All
	40.000	2008							117								1					48			23	189
Rennes	13,600	2007				46			822								578				45	94			75	1660
	· ·	2006			80			103	801		87		56	1			20				105	135			110	1498
Jan 2006		2005			177			103					67				54		21		93					515
Jan 2000		2004			64 31			144			004	-					24	25	115		46	456		26		900
		2003 2002	100		31		65	84 89			234	7 75	93				40 58	109	331	36	22 30	216	88	26 26		1289 471
		2002	100					83			210	112	27				38				149	8	277	36		940
		2000				7		13			675	84	3			42	26	481	197		155	4	163	00		1850
Rologna	15,500	1999						12			457	216	-			25	35		269	66	149		258			1487
Bologna	13,300	1998		46					336		538	73	36				78		678	5	256	22	263		25	2356
	-	1997							630		602	86	5				53		167	112	147	215			48	2065
May 2007		1996							143	10	16	156	1	147	10	7	195	353	493	1	189	171			97	1989
		1995							26	12	1	135				21	114	383	1		1	152			16	841
		1994								12	117	87				1	64	278			1					560
		1993 1992									3 15	69 83	1				60 4	41								174 102
		1992									10	56	1		1		4									58
Hamar	19,200	1990										35	*		1.00											35
riamai	10,200	1989										22														22
Oct 2008		1988										4														4
UCI 2008		All years	100	46	352	53	65	631	2875	34	2955	1300	290	148	11	75	1442	1670	2272	220	1388	1521	1049	114	394	19005
	Pa	age Loads		Uniqu	e Vis	itors	; [Ret	urning	{ Visi	itors]						\square	See.		T	41	120	1	5	Z

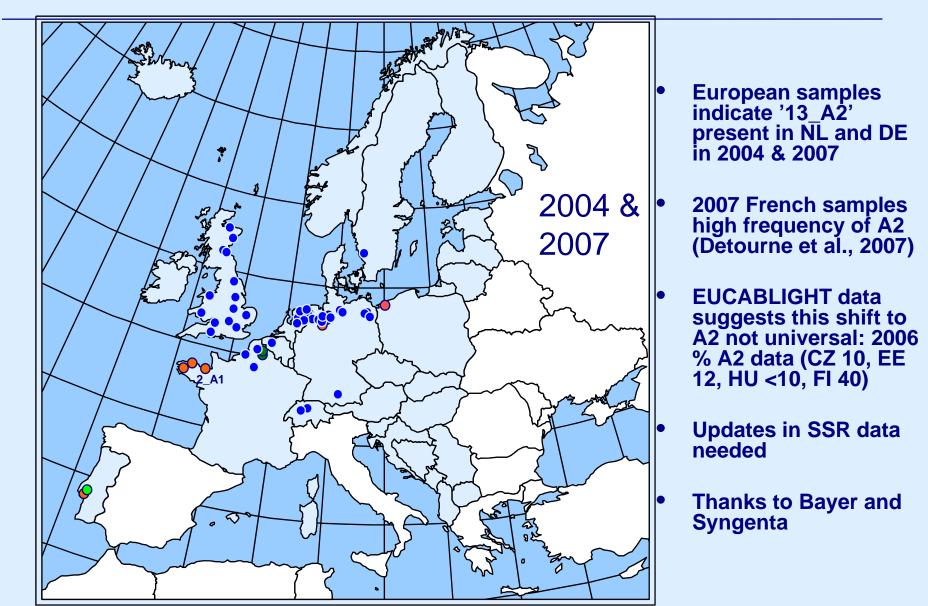
SSR data critical and more needed to fill in details

Pathogen overview Select one or more traits and press the show button. Help Mating type Metalaxyl resistance Aggressiveness Virulence mtDNA AFLP Isozyme SSR All Show Country AT BE CZ DE DK EE EN ES FI FR HU IE IT MA ND NL NO PE PL SC SE SK WA All Year countries 3 All 71 1670 71 882 61 years

SSR alleles – Current SCRI panels

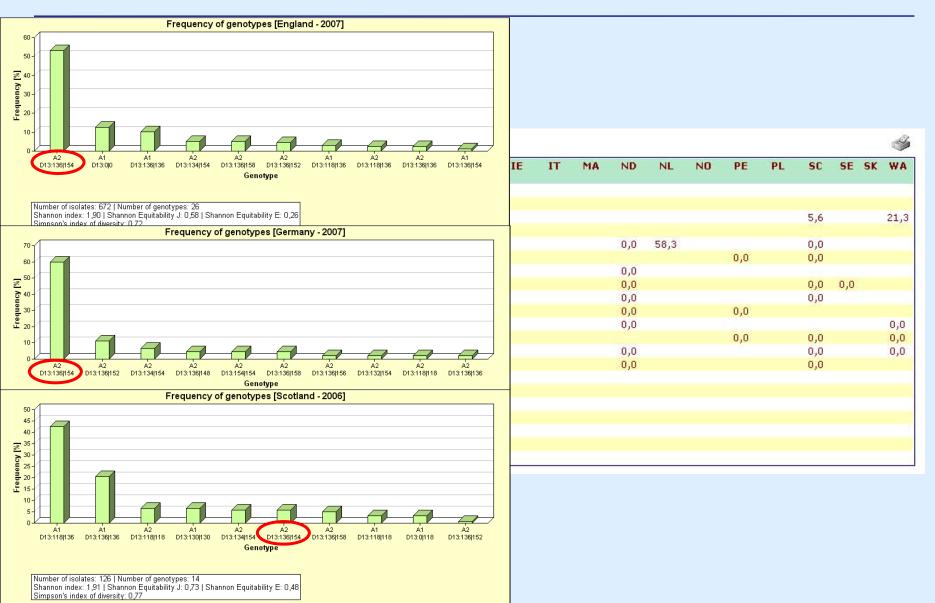
	Pane	1	2	Pane	1		Pane	el 1		Pane	el 2	l f	Panel	2	Ę	Pane	2		Pane	2		Pane	2	5	Pane	el 3	5	Pane	13		Pane	3
	Pi	2		Pi8	9		Pi4	B		G1	1	1	Pi04	1	7	Pi7	0		Pi5	6		Pi6		- 2	D1	3	2.5	Pi1	6		Pi3	3
	Allele	<u>)</u>		Allele	Č		Allele	T		Allele	1994 - C.		Altele	50	Allele							Altele			Allele			Allele			Allele	<u></u>
Peak	and	Comment	Peak	name and	Comment	Peak	name and	Comment	Peak size	name	Comment	Peak size	name	Comment	Peak size	name	Comment	Peak size	Allele	Comment	Peak size	and	Comment	Peak stre	name	Comment	Peak size	name and	Comment	Peak size	name	Comment
cize	colour	0.2402.6225	size	colour	Politices,	GIZO	colour	 	40008.0018 1	colour	, MARCHINES,	2429030278	colour	86963654g	0.000	colour	2130999246 ₁₅	11200	name		1000000	colour		5 B.5300-	colour		tilisen tes	opiour		george e	colour	10.56220523
	142	nordic	175.7		mex & ec		203	nordic	128.5	128	ec	162.4	160	nordic	187.3	189	U3-1	253.4		widespread		148	widespread	99.1	100, nut	widespread		160	nordic	189.8	191	possible GB
1000	150	nordic	177.9	179		206.6	205	widespread	130.3	130	ec		162	nordic	190.3	192	widespread	255.3	176	widespread		_	widespread		105	nordic		166	nordic	201.5	203	widespread
151.2	152	widespread	179.9	181	widespread	210.5	209	rare	132.3	132	mex	167.5	165	widespread	193.1	195	widespread	_			278.7	1\$7	widespread	106.2	108	US-8	167.4	168	nordic_mex	204.3	206	widespread
157.5	156	nordic	181.8	183	80	212.5	211	mex	136.0 138.5	135	mex	169.8	168	rare	196.0	198	bolivia?				-	1		108.2	110	ec mex	171.4	172	nordic_mex	207.0	208.	nordic
157.5	158	ecâhu	-	185	ec	214.7	213	widespread widespread	138.5	138	NL_00 widespread	173.7	170	widespread	· · · ·		3	note nam	ed on sho	rt product	note nan	ned on sh	ort product	114.2	112	hu	173.2	174	rare widespread	5 6		
161.9	160	widespread	190.9	18/	ec	222.6	221	rare	140.0	142	nordic	17.3.6	1/2	noraic		-	5 - 15	2 8		-		8 8	<u> </u>	116.3	118	rare widespread	177.2	176	widespread		<u> </u>	<u> </u>
163.8	154	rare	192.8	193	BPC	226.7	225	hu&us8	145.0	145	BPC 06		6 63		c 2	<u> </u>	<u>0</u>	23 23			-	23 2	<u> </u>	119.0	120	US	179.2	180	mex			<u> </u>
166.0	166	rare	195.0	195	BPC		235	ec	147.1	148	81.0700		<u>e s</u>			-	2 2	S - 2			1	3 3		120.9	122	rare	181.1	183	ecâmex	2 8	8	
168.0	168	rare	196.8	197	BPC		243	ec	149.4	150	ecânordic		8 6				8 - E	8 8				2 8		123.1	124	exà hu	184.4	186	ec	3 8		
170.0	170	mex	198.7	199	BPC		247	ec	151.4	152	widespread													125.1	126	rare						
1000			200.7	201	BPC	3	255	ec	153.6	154	widespread		8 8				2	3 3				3 3		127.1	128	rare				1		
			202.7	203	BPC		263	ec	155.4	155	widespread													128.8	130	widespread						
	2 8		204.8	205	mex	1	267	ec	157.5		widespread		9 - S			i.	9	8 8			ŝ.	8 8		130.6	132	widespread	8		1 - N			
	<u> </u>		208.6	209	mex		269	ec	159.6	160	widespread											<u> </u>		132.6	134	widespread			1 1			
2	9 8		210.5	211	mex	1	271	ec	161.5	162	widespread		8 D		1		4	9 8			6	G 8		134.8	136	widespread	1			2		
	1 - C			2	SI		273	ec	163.3	154	widespread		8 12				ý	31 - Š			2	st (136.6	118	widespread			52	3 52		
							277	ec	165.3	165	widespread		<u> </u>			_								138.9	140	widespread						L
	<u> 1</u>			<u> </u>	2		281	ec	167.6 169.2	111	widespread		<u>i (</u>	-		<	1 1	<u>2</u>			1	<u>0</u> 1		141.1 143.3	142	rare		_		2 8		L
			<u> </u>				283	ec	171.7	170	ec & SCD6		8 10								-			145.6	144	ec mex					<u> </u>	L
-			-	6	2		285	ec	196.3	198	? ec				_		()				1			145.0	145	ec ecGB		_		-		
			-				285	ec	198.3	200	ec		2 - 10	cep -	llolo infr	-	n sheet indi	ontina fi	or open	loour: a)	the	-		150.2	145	rare						
-				-	<u> </u>	-	295	ec	200.2	202	-		8 10				run on an							152.3	152	ecâhu		_			<u> </u>	
-						<u> </u>	299	ec	202.4	204	widespread		0. 0.				the allele r					-	<u> </u>	154.3	154	widespread			· ·		<u> </u>	
-	1 1			S.	S		etc	ec	204.1	205	widespread		8 8				codes used					3 5		158.4	155	widespread		-	2 5	S		
				с.					205.8	208	widespread						ency in the							158.6	158	widespread						
2	9 - B			ŝ.	8			- B	207.9	210			8 - 1S				tions. Additi					1 8		160.6	160	gb 07				8 13		
				2	3				209.9	212			8-18	circum	stances	where	a particular	allele is	associa	ated with a	з			162.4	162	rare				3	6	
									213.6	216					y or clor									164.4	164	rare						
	X 8			8	Q		()	10 – 10	3 - 33				8 – N	see wi	ww.euca	ablight.o	org for proto	col				12 - 2		166.6	165	hu			0	8 - B		
	<u> </u>												<u> </u>									1		168.4	168	rare						
-	1			č			-	-	2				<u>i</u>				document	- comme	ents can	be passe	d back	1 - 3		170.4	170	rare		_	-	2	لتصل	
· · · · ·	C 3			2	Q 2				<u> </u>				8 - 12	to davi	d.cooke	@scri.a	ac.uk					<u> </u>		172.5	172	rare			1 12	<u> </u>		L
-				-			-						, ,								9	1		174.4	174	rare					<u> </u>	t
	<u> </u>		-	2	2 <u>-</u> 2	3		5 B	5 8				8 6	\vdash								13 8		210.8	175	mex			5 <u>85</u>	<u> </u>	<u> </u>	
			<u> </u>	8	-					- 2	-		0, 03	\vdash							0	1 3	-	210.8	218	Kent_2007		-			<u> </u>	
				ő	2 3	-	-														-			note a r	trift in	size versus	name	-		-		<u> </u>
			-				-						12 10				2									large alleles						
																								from si	nali to	large alleles	5				()	

SSR harmonisation



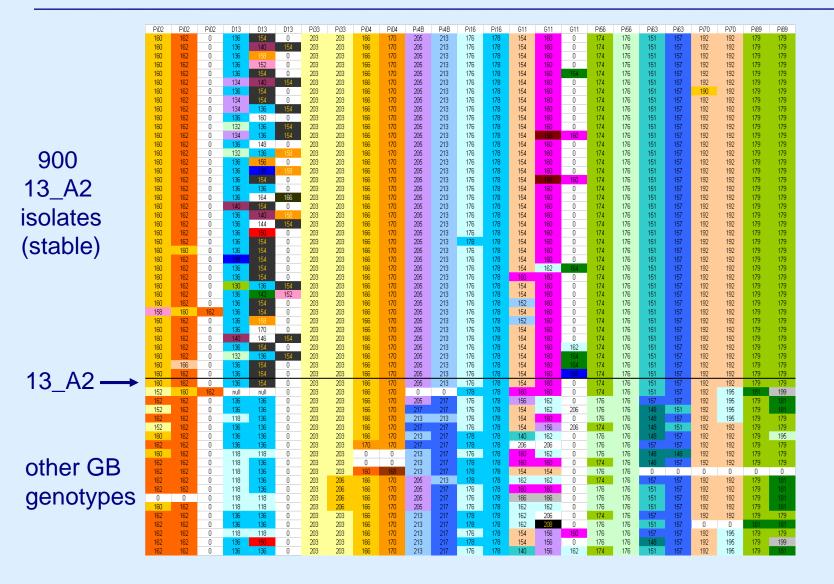
- SCRI (Pi02, Pi04, Pi16, Pi26, Pi33, Pi56, Pi63, Pi66, Pi70, Pi89)
- UW Bangor (D13)
- Syngenta (Pi4B, PiG11, Pi4G, Pi1D, Pi2D, Pi2H)
- PRI (SSR1-8)
- Theo van der Lee and David Cooke working on a revised set of the best 12 markers
- Markers and alleles already built into P.exe
- Existing SCRI system and allele images on Eucablight website

EU-scale distribution of genotype 13_A2



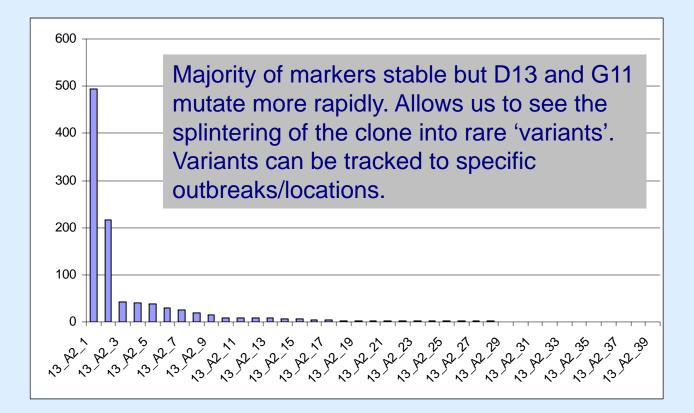
Tracking genotypes in the database

Tracking genotypes in the database



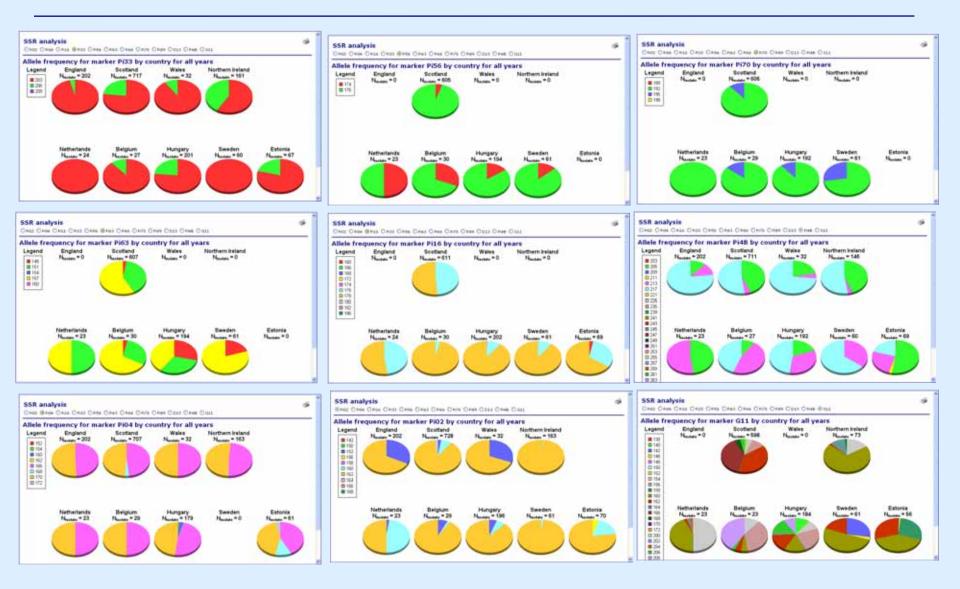
Freque	ency	of	Blue	-13	geno	otyp	e																4
Country Year	AT	BE	CZ	DE	DK	EE	EN	ES	FI	FR	HU	IE	IT	MA	ND	NL	NO	PE	PL	SC	SE	SK	WA
2008																							
2007				58,7			50,1																
2006				1000			38,3													5,6			21,3
2005							1				0,0									1500			1500
2004						0,0					1.1				0,0	58,3				0,0			
2003																		0,0		0,0			
2002											0,0				0,0								
2001											0,0				0,0					0,0	0,0		
2000											0,0				0,0					0,0			
1999															0,0			0,0					
1998		0,0					0,0				0,0				0,0								0,0
1997							0,0				0,0							0,0		0,0			0,0
1996							0,0				0,0				0,0					0,0			0,0
1995															0,0					0,0			
1994																							
1993											0,0												
1992																							
1991											0,0												
1990																							
1989																							
1988																							

Tracking type 13_A2 in the database



euca

blight

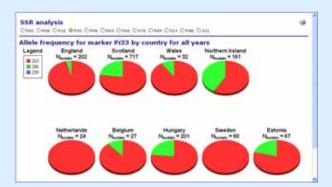


SSR allele distribution

Web-tools needed

Refined tools needed to:

Track changing allele frequencies over time and space


Genotype identification and naming

Plot relationships between genotypes

Search for specific genotypes

Relate phenotype to genotype

Map diversity – GIS systems

- EU Framework 7 bid Jan 08
- USDA Biosecurity bid June 08
- Support of GILB/CIP
- Need to build Eucablight database development into other funding bids
- Sponsorship other ideas?

Conclusions & Future plans

- Unique resource to help understand pathogen population change on a range of scales (thanks to all data submitters and DIAS)
- *P. infestans* population diverse
- Association between factors observed (e.g. fungicide resistance and mating type)
- Dramatic shift in many regions
- Database updates and more interpretation at local and EU scale required -2009 timescale
- Need to link data on population change with the cause of that change. Identify factors that 'push' or 'pull' population change (e.g. increased aggressiveness and fitness – need better links to fundamental research on effectors and R-genes)
- Better exploitation of host resistance (GM-based?) will only work if we understanding pathogen population
- Continue expansion beyond Europe setting context of EU populations