Aggressiveness and transmission: does a correlation exist in

P. infestans?

Pasco C., Marquer B., Douchy H., Magalon H. and Andrivon D. Workshop Hamar, Norway 28-31/10/2008

Rationale

Using resistant cultivars

- useful alternative to pesticides...
- ... only if resistance is durable/ stable

which supposes that aggressiveness does not continually increase over time.

Is aggressiveness stable?

Y European populations are polymorphic for aggressiveness

UK – Day & Shaw 1999; Ireland – Gillian & Cooke

F - Lebreton et al. 1999; Pilet et al. 2003; Montarry et al. 2006

NL - Flier et al. 1999

b this implies that selection for higher aggressiveness is possible

ŸAggressiveness increases during epidemics

Andrivon et al., 2007

Ü Consequences in the long run?

Consequences: possible scenarios

If high aggressiveness does not lead to a decrease in seasonto-season transmission

Þ gradual increase in mean aggressiveness over time

If high aggressiveness leads to a decrease of transmission P Aggressiveness should remain stable

Why could there be a trade-off?

Low infection

aggressiveness

Asexual transmission between seasons
 b three successive steps

proportion

stems

transmission

What do we know today?

Α

Part 1

Tubers to foliage transmission

1 – Tubers to foliage transmission

- 3 isolates of *Phytophthora infestans* with ≠ agressiveness on leaflet of cultivar Bintje

- Tubers
- One susceptible cultivar : Bintje
- 100 tubers per isolate (repetition)
- water control (sterile water)

Inoculation method

Sporangia suspension is produced on detached leaflets

tubers were placed in humid chamber for 3 days at 18°C
Opening lenticels

Spray inoculation: 5x10⁴ sporangia/tuber

Tubers were kept in humid chamber for 4 days

Planting in compost

Emergence notation : one month after planting

100 %

51 %

67 %

Lowest emergence rate: 18 %

Some symptoms of stem blight

Some other symptoms observed

very premature stem death

Scorings

- -% Emergence
- -Stem number per plant
- Number of diseased stems per plant

Two years: 2007 & 2008

Results

Higher aggressiveness results in:

- Þ fewer emerged plants,
- Þ fewer stems per plant,

but

P no differences in the proportion of blighted stems among those emerged

Overall:

transmission of the most aggressive isolate is less efficient

Trade-off between aggressiveness and transmission

Part 2

Method

- 3 *Phytophthora infestans* isolates with ≠ agressiveness on cultivar Bintje foliage

- One susceptible cultivar : Bintje
- Plants at different stages of their growth D1 D2 D3
- 10 plants per isolate and per date
- water as a control

Method

Plants were grown in greenhouse 15-20°C, 16 hours of day: 3 planting dates

1 chapel per isolate, with

-10 plants Date 1 (72 days)

-10 plants Date 2 (56 days)

- 10 plants Date 3 (42 days)

▶ Early to late epidemics

Inoculation method

Sporangia suspension is produced from infected detached leaflets

Inoculation : Distribute uniformly 20 drops of 20µl by plant.

Let the symptoms develop on the foliage

Spray the foliage with water to wash sporangia down towards tubers

Plants from Date 1 (72 days)

18 days after inoculation.

What do we expect?

Number and weight of tubers

Isolates aggressiveness did not influence

the mean number of tubers per plant.

their average weight.

Number and weight of blighted tubers

Isolates aggressiveness influence:

- the mean number of blighted tubers per plant
- their average weight.

To conclude

▶ A trade-off seems to exist between aggressiveness and transmission!

Where to now?

- Check survival with tubers
 - of different sizes

with different initial severity of blight

Check the effect of tuber resistance

Thanks to

- Roselyne Corbière for the supply of isolates,
- Bruno Marquer, Hervé Douchy and Christian Guérin for their technical support,
- Didier Andrivon and Hélène Magalon to have helped me analyze these results and build this slide show.

Isolates aggressiveness tested on Bintje leaflets

Isolates	Mean size lesion	Sporangia number /cm2	Sporangia number per lesion
S1	11.78	39051	463000
S2	14.39	41986	610766
S 3	14.51	67329	977983

Part 1: Harvest, 50 days after planting

Notation at harvest: per plant

- Number of tubers,
- Weight of tubers