

Is oospore production of *Phytophthora infestans* modulated by level and components of partial resistance?

J. Clement, B. Marquer and D. Andrivon INRA Rennes (France), UMR BiO3P

Introduction Partial resistance

- Slows down the rate at which disease increases within a single plant or population of identical plants [Van der Plank, 1968]
- Partial resistance can act by:
 - 1. Lengthening the latent period
 - 2. Reducing progress of parasite in plant tissue
 - 3. Limiting spore production
 - 4. Reducing infectivity (success of infection)
- Can be measured
 - I in the field (visual score) NIAB scores, AUDPC, ...
 - in controlled conditions (calibrated tests)

Components of partial resistance

Introduction Sexual reproduction

Conservation stage during the hard season

- Phytophthora infestans = Heterothallic species
 - Presence of the two mating type (A1 and A2) required to induce differenciation of sexual organs
 - a Controlled by sexual hormons

This is a simplified disease cycle for late blight of potato.

Introduction Oospore production vs. partial resistance

Æ How partial resistance (during colonisation stage) could modulate oospore production ?

- What we know...
 - In whole plants :

More oospores for medium levels (NIAB scores) (Hanson & Shattock, 1998) or for high levels (Strömberg & al, 2001) of partial resistance

In leaf discs :

More oospores on medium level (Hanson & Shattock, 1998; Drenth & al, 1995; Strömberg & al, 2001) or sometimes on low level (Hanson & Shattock, 1998) with some exceptions

BUT

- Results obtained for only one pair of strains in each case
- What do field scores mean regarding partial resistance?

Objectives

Link quantitative and qualitative characteristics of partial resistance and oospore production for different pairs:

Effect of partial resistance levels
 Effect of components of resistance/aggressiveness

Approach

- Testing behaviour of strains on cultivars with differents levels of partial resistance
- Assessing oospore production by pairs of these strains

Materials ...

Plant material

Æ 10 cultivars of Solanum tuberosum

- 2 reference cultivars
 - Bintje, Désirée
- 7 old cultivars, bred before introduction of Solanum demissum R genes

Robijn, Roode Industrie, Furore, Rosafolia, Möwe, Herbstrote, Noorstar

I cultivar built by INRA and interesting to test inra114-92T

Materials ... Pathogen

- 6 strains of Phytophthora infestans
 - 4 A1
 2 A2
 8 possible pairs

Chosen for their aggressiveness on cv. Bintje in earlier tests

... and methods

Test of aggressiveness

- Detached leaflets
- Three aggressiveness components

Aggressiveness Index AI :

AI = Log(LA*SP/LP)

... and methods Production of oospores

- Inoculation
 - 8 couples on 10 cultivars
 - 2 inoculation mode
 - 6 leaflets/modality

- Counting of oospores
 - Pretreatment with bleach

- Grinding
- Measurement of concentration with haemocytometer

Results Aggressiveness/components of resistance

- Interaction between strains and cultivars for each component
 - No consensus ranking of cultivars for their level of resistance on each component
 - Each interaction strain/cultivar must be considered separately

Results Aggressiveness of a couple?

Aggressiveness data for each strain <u>alone</u>

■ Objective : link characteristics of resistance/ aggressiveness to oospore production

- Oospore Þ one pair = 2 compatible strains
- What is aggressiveness of a pair???

$$\frac{\text{aggr}_{A1} + \text{aggr}_{A2}}{2}$$

max or min $(aggr_{A1}; aggr_{A2})$

è Mean of each parameter

Results

04

Oospore production vs. aggressiveness index

- Variability between reps
- For each pair :

FThe more aggressive the pairs, the higher the oospore production

FMixed inoculation gives often more oospores

Results

04

A1-4

AI

Oospore production vs. aggressiveness index

Oospores/mm³

- Variability between reps
- For each pair :

FThe more aggressive the pairs, the higher the oospore production

Results Oospore production vs. aggressiveness index

Same conclusion when pooling all data.

Which component has more influence in oospore production?
 Hypotheses :

- 1. Lesion area : rapidity of strain growth
- 2. Latent period : rapidity of growth start
- 3. Spore production perhaps energy and metabolites allocated for sporulation could be a disadvantage in oospore production

Role in meeting of strains

• 2 kinds of response according to pairs:

> FHigher oospore production for medium levels of resistance for this component 🕁

> FHigher oospore production for lower levels of resistance for this component (

ΙΔ

Discussion / Perspectives

- First results show : differential production of oospore on cultivar with
 - I differents components of partial resistance
 - different levels of partial resistance
 - è Analyses must be continued
- Repeatability of experiment must be checked
 - data collected, but not analysed yet
- An interesting question is
 « How to measure the aggressiveness of a pair of strains? »

Thank you for your attention

Thank you to :

INRA Ploudaniel J.E. Chauvin R. Pellé For implicating in my work

Name	Mating type	Lesion area	Spores/cm ²	
P46	A1	-	_	
2BEK21	A1	+	+	
20EK24	A1	-	+	
2BP3-06	A1	+	-	
P8	A2	-	-	
2BP6-07	A2	+	+	

Results Oospore production vs. partial resistance

Pair n°	1	2	3	4	5	6	7	8
Lesion Area	(C	\bigstar	\bigstar	C	C	C	\bigstar
Latent Period	\bigstar	\bigstar	(((\bigstar	\bigstar	\bigstar
Spore Production	(\bigstar	((((\bigstar	\bigstar

FHigher oospore production for

medium level of resistance for this component

Iower level of resistance for this component