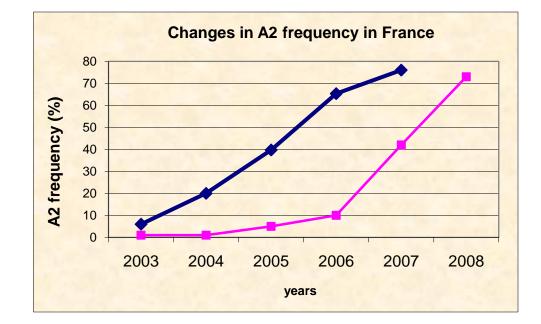
The A2 invasion in France: population structures of *Phytophthora infestans* during the first few years


12 Euroblight Workshop, Arras, 3-6 May 2010

French populations of *P. infestans* : a short history

- 1980s 1990s: the second migration
 - Populations almost monomorphic for MT
 - A1 only in field crops
 - Rare A2s in gardens and on tomatoes
 - Limited polymorphism for phenylamide resistance
 - Pathogenicity :
 - Virulence: variations on a main theme (1.3.4.7.10.11)
 - Consistent adaptation to the dominant cultivar Bintje
 - Molecular markers consistent with 'new' population *sensu* Spielman *et al.* (1990)
 - > Clonal population introduced in the 1970s, and evolving under selection and genetic drift

French populations of *P. infestans* : facing a third invasion?

- A major change in MT frequencies since 2003
- Simultaneous with similar changes in NW Europe

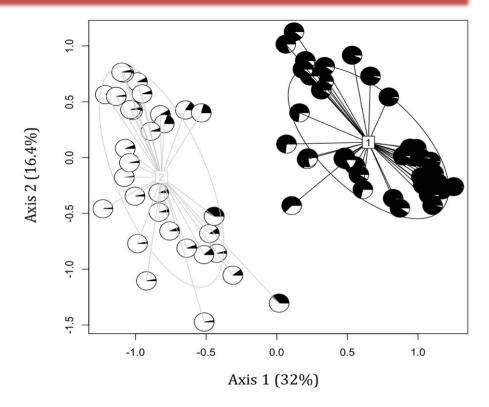
French populations of *P. infestans* : new questions

- Where do these new isolates come from?
- Why do they invade current populations?
- Will the invasion change the reproductive status of *P. infestans* in France (oospores)?
- Will it change their adaptive traits:
 - Virulence?
 - Adaptation to prevalent cultivars?
 - Fungicides?

Investigation strategy

- Get back to samples collected in 2004 and 2005 in both regions
 - Northern France: start of the invasion
 - Brittany : *a priori* not concerned yet
- Type them with polymorphic SSR markers
- Analyse population structures with no *a priori*
 - Assignation methods (PCA, Bayesian methods...)
 - Population genetics tools to look for signs of recombination

Sampling and typing


Sampling

All isolates from Bintje, to avoid discrepancies due to cvs

	GPS position			0005	
	Lat	Long	2004	2005	Total
North					
P01	N50 10 04.4	E2 36 46.2	10		10
P02	N50 30 47.9	E2 46 14.0	10		10
P03	N50 30 27.8	E2 46 13.4	1		1
P04	N50 29 47.7	E2 46 54.2	2		2
P05	N50 15 13.8	E2 16 29.2	3		3
P06	N50 16 04.9	E2 15 08.4	8		8
P07	N50 35 07.1	E2 57 18.9	7	10	17
P08	N49 49 33.6	E2 23 04.1	10	1	11
P12	N50 15 22.2	E3 21 10.1		16	16
P13	N50 15 09.6	E3 23 30.3		16	16
P14	N50 33 38.5	E2 55 46.8		7	7
P15	N50 40 11.4	E2 35 59.4		9	9
P16	N50 39 53.5	E2 36 16.8		4	4
P17	N50 20 20.3	E2 52 40.8		11	11
P18	N50 18 53.7	E2 52 30.3		4	4
P19	N50 18 57.2	E2 53 20.8		5	5
Total North			51	83	134
Brittany					
P09	N48 22 27.7	W4 44 48.7	11	9	20
P10	N48 30 00.6	W4 19 14.7	14	17	31
P11	N48 29 59.9	W4 19 19.1	11	8	19
P20	N48 06 29.1	W1 47 35.3		16	16
Total Brittany	,		36	50	86
Total			87	133	220

French populations of *P. infestans* : a two sided coin

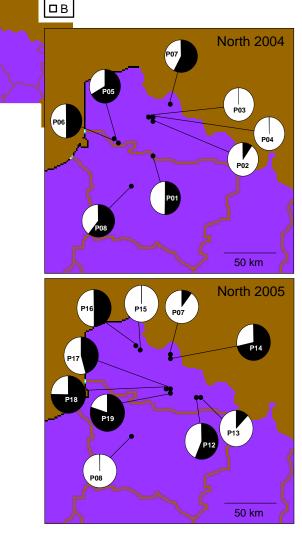
- Two clusters
 - * genetically diverse
 - * but distinct

PCA on the 70 multilocus SSR haplotypes of *P. infestans* + non-hierarchical classification (Ward's method).

Pie-charts: probability of assignment (STRUCTURE) to Cluster A (black) and cluster B i(white).

Spatio-temporal changes, 2004-2005

Northern France


- Many fields with both clusters present
- No clear change in cluster frequencies between years

Brittany

•

Ance with both ent oge in encies rs

Cluster B appears – but only the A1s in it!

A

So what...

regarding invasion

- Complicated pattern
 - The easy part : two clusters
 - The tricky part: both mating types within each cluster

In for more questions...

Populations structures

- Why didn't A2s emerge before, if present in same clusters as A1s?
- Why does cluster B invade now?
- Is cluster B related to Blue 13?

Mating systems

- Why didn't A1 + A2 from cluster A mate (at least more often)?
- Will clusters A & B mate?

Adaptation

- Cluster B more virulent is it useful/relevant?
- Cluster B resistant to phenylamides is this related to fitness?

What's next?

- Populations from 2006 2008 typed now
 - Analyses underway
 - Suggest that A1 / A2 get even more separated now
 - » More discriminating power with additional loci
 - » Loss of genotypes due to drift over time?
 - **Phenotypic features** > see poster by Roselyne
 - Adaptation
 - Status of virulence/ phenylamide resistance re. fitness still unclear
 - No obvious differences between A1/A2 re. aggressiveness

With a little help from my friends...

Who

- Josselin Montarry
- Roselyne Corbière
- Isabelle Glais
- Gladys Mialdea
- François Delmotte (INRA Bordeaux)
- Hélène Magalon

about everything...

sampling, typing etc...

population genetic analyses

did what?