Making sense of *P. infestans* diversity data at national and international scales

Themes GMO & IPM

David Cooke et al.

PathogenTraits

Where & When?

Database

Mechanisms

Outline

- GB & EU population status
- Database update & naming lineages/populations
- Progress on SSR markers and analysis
- Genomics and effector sequencing

GB P. infestans population update

Sample of EU *P. infestans* genotypes (2008-10) (*n*=350)

- 13_A2 still present in many areas (less due to reduced Metalaxyl use?)
- A high proportion of novel 'misc' types particularly in NE
- New genotype in PL, SK & SE
- 23_A1 on tomato in Italy & GK
- Pooling all EU data to come
- Thanks to Bayer (see poster) and Syngenta, Howard Hinds, Dolf deBoer, Vangelis Vellios

Database update

- EUCABLIGHT still active and can be updated using the
 P.exe tool developed by Jens Hansen & Poul Lassen (UoA)
- Integration underway into more comprehensive & redesigned 'CropProblem' database (cereal rust) with upgraded database techniques
- SSR data entry will be considerably easier in future with custom XL spreadsheets allowing upload of large datasets
- Improved mapping and analysis tools being developed for rust; aim to apply these to blight (funding needed)
- More discussion on Weds morning

Genotype naming proposal

- New clonal lineages will emerge. But naming currently = ad hoc
- Single system would allow clearer scientific communication
- Ideally types should be defined by an objective method calculated and applied in silico
- Is that possible? (see later)
- What marker system to use? SSRs best at the moment but sequencing may replace this in the future
- Naming convention (Cooke, Li and van der Lee)
 - EU_Y004_G0013_Y004_V001
 - EU_Y004_G0013_Y005_V002
 - EU_Y004_G0013_Y006_V003
 - CN_Y006_G0001_Y006_V001

SSR Analysis methods

- 12 markers in multiplex (PRI, JHI collaboration)
- Diploid and higher ploidies (multiple SSR peaks) in the same population makes population genetics difficult
- Challenges due to clonality and variants of clones
- A method that alleviates the ploidy problem based on Bruvo genetic distances published recently & implemented in R as POLYSAT (Clark & Jasieniuk Molecular Ecology Resources 2011)
- Minimum spanning trees & Principal component analysis output

Bruvo distance and MINSP trees

Goss and Grunwald based on GB population data

Global data by mating type & mtDNA

POLYSAT - Global population plus 1300 European isolates Labelled by genotype (defined manually)

- Reasonably well defined but split in each unexplained
- Add all 'misc' types the 'diversity' gaps are filled with recombinants
- Overlaps need to be looked at more carefully
- This clustering may not be suited to defining clones?
 MINSP trees better

The same data labelled by GB versus the rest of Europe

The James Hutton Institute

- Some overlap
- Also regions that appear quite distinct
- Further analysis needed

-0.3

Clustering approaches have potential

Dendroscope viewing tool looks useful

Bootstrapping tools needed to test statistical support for such analysis

Effector diversity

- Understanding effector
 diversity important for
 deployment new blight
 resistances (WUR method promising)
- Which effectors? 500+ RXLRs alone. At JHI candidates based on functional and localisation assays

How to study effector diversity?

- PCR & test gene by gene
 - JHI testing new software (L. Pritchard) to design hundreds of primer pairs specific to single RXLR effector genes.
 - Presence/absence in genome
 - Sequence variation define function
 - Collaborations needed
- Next Generation sequencing of DNA or cDNA transcripts

Example - RXLR gene PITG_06478 (RX5)

Presence of SNP:	s in PITG	in PITG_06478 effector Gene (RX5) SNP position (bp)											
Isolate	333	336	348	n (bp) 350	386	391	488	515	519	634	646	751	752
NL99013	C	A	R	R	R	T	C	A	C	G	T	W	γ
PITG 06478	c	G	G	G	G	Ť	c	A	c	A	Ť	A	т
NL03132	c	G	G	G	G	Ť	c	A	c	R	Ť	A	Ť
2009 7654A	c	G	G	G	G	Ť	c	A	c	R	Ť	A	Ť
NL07367	c	G	G	G	G	Ť	c	A	c	G	Ť	A	Ť
NL04255	c	G	G	G	G	Ť	c	A	c	G	Ť	A	Ť
NL03020	c	G	G	G	G	T	c	A	c	A	Ť	A	T
NL01008	c	G	G	G	G	Ť	c	A	c	A	Ť	A	Ť
EC-3527	C	G	G	G	G	Ť	c	A	c	R	Ť	A	Ť
2006_3936C2	c	G	G	G	G	Ť	c	A	c	R	Ť	A	Ť
2006_3938C2 2006_3928A	c	G	G	G	G	Ť	c	A	c	R	Ť	A	Ť
2006_3928A 2006_3884B	- c	G	G	G	G	T	c	A	c	R	Ť	A	T
T30-4	G	A	A	A	A	Α	Т	c	С	G	T	T	С
NL01155	G	A	A	A	A	A	Ť	c	c	G	T	Ť	C
	G	A	A	A	A	A	Ť	C	C	G	Υ	T	C
NL03114	G	A	A	A	A	A	Ť	C	C	G	Y	Ť	C
NL04223		A	A		A		Ť	C	c	G	T	Ť	C
NL04297	G			A		A				_			C
NL02037	G	A	A	A	A	A	T	С	С	G	T	T	
2004_10477B	G	A	A	A	A	A	T	С	С	G	T	T	С
T30-4	G	A	A	A	A	A	T	С	С	G	T	T	С
MP_622	G	A	A	A	A	A	Ţ	С	С	G	T	T	С
2006_4024E	G	A	A	A	A	A	Ţ	С	С	G	T	W	Υ
MP_618	G	A	A	A	A	A	T	С	С	G	T	T	С
SE_03087	G	A	A	A	A	A	T	С	С	G	T	T	С
2006_4332	G	A	A	Α	Α	Α	T	С	С	G	Υ	T	С
2004-7804B	G	Α	Α	Α	A	Α	T	С	С	G	T	Т	С
2006_4244E	S	Α	R	R	Α	W	Υ	M	С	G	Т	W	Υ
2003_25_3_1	S	R	R	R	Α	W	Υ	M	С	R	Т	W	Y
IP001900	S	R	R	R	G	T	Υ	M	Υ	R	Т	W	Y
88069	S	R	R	R	R	Т	С	Α	С	G	Υ	W	Y
80029	S	R	R	R	R	W	Υ	M	С	R	Т	W	Υ
IP098014	S	R	R	R	R	W	Υ	M	С	R	Т	W	Y
NL00026	S	R	R	R	R	W	Υ	M	С	G	Т	W	Υ
NL05548	S	R	R	R	R	W	Υ	M	С	G	Т	W	Υ
88133	S	R	R	R	R	W	Υ	M	С	R	Т	W	Υ
NL02085	S	R	R	R	R	W	Υ	M	С	R	Т	W	Υ
2006_4168C	S	R	R	R	R	W	Υ	M	С	G	Υ	W	Y
2006_3992G	S	R	R	R	R	W	Υ	С	С	G	Т	W	Υ
2006_4256B	S	R	R	R	R	W	Υ	M	С	G	Υ	W	Υ
2006_3984C	s	R	R	R	R	W	Υ	M	С	R	Т	W	Y
2006-4012F	s	R	R	R	R	W	Υ	M	С	G	Т	W	Υ
2006-3888A	s	R	R	R	R	W	Y	M	С	R	Т	W	Y
2006_4100A	s	R	R	R	R	W	Υ	M	С	R	Т	W	Y
2006_4232E	S	R	R	R	R	W	Υ	M	С	G	Υ	W	Υ

- 13 SNPs identified
- Seven replacement changes observed
- Homozygous and heterozygous forms found in European population
- Starting to examine the evolutionary history of individual and collective RXLR diversity
- Spatial and temporal patterns will be important too so we need to build database that holds such info – merging bioinformatics with phylogeography

P. infestans 13_A2 genomics

- 06_2928A sequenced and compared to five others
- Many SNPs identified –RXLRs in particular under +ve selection
- Expanded effector repertoire & many CNVs seen
- Gene expression patterns of 13_A2differ from other isolates

Conclusions & Thanks

- We have not yet made sense of all P.infestans diversity!
- P. infestans population diverse but structured
- Analysis tools improving
- Database updates and better interpretation at regional and Intnl scale required
- We need to understand the drivers of popn change better better links to fundamental research on effectors and R-genes)

 Thanks to all current and future data submitters and collaborators, friends and colleagues