Multiple infections and reproductive strategies in *Phytophthora infestans*

Julie A.J. Clément, Hélène M. Magalon, Isabelle Glais and Didier Andrivon

Host availability and epidemic dynamics

 Agrosystems = alternance of host presence and absence

> => epidemic dynamics = alternance of pathogen invasion and survival

Pathogen life history traits

• To invade:

host colonisation and host to host transmission

- Growth in host
 → mycelium growth rate
- Pathogen dissemination
 ⇒ sporangia production
- Many cycles
 - earrow short latent period
 - → asexual cycle

• To survive:

primary inoculum for the next season

- asexual
- sexual

Trade offs between life history traits

- The perfect parasite would maximise both invasion and survival...
- ... but theory shows this can't be done
 - ➔ so trade offs exist
 - For individuals: ressource allocation

• For populations: selection of the strategies maximising fitness, not each trait

Roff, 1992; Stearns, 1992

4

Modulation of reproduction strategies

• How?

- More intense exploitation of host = increasing available ressources
- Changing resource allocation between traits/functions

What if more than one infection?

 Sharing ressources > changes in host exploitation or ressource allocation?

Mideo, 2009

The case of heterothallic species

- Type of offspring depends on multiple infections
- Sex occurs only between compatible partners
 - ➔ Dissociate effects of
 - * multiple infections
 - * differential allocation of ressources into both modes of reproduction
- *P. infestans* a good model to look at this

Infection situations in P. infestans

• Single infections

- Multiple infections
 - Incompatible

(A1+A1 or A2+A2)

compatible

(A1+A2)

➔ sexual reproduction

Experimental plan

- One susceptible host : Bintje
- Inoculation scheme allowing to dissociate effects

What was measured

• Offspring number...

- ... separating sexual and asexual offspring
- ... quantifying the contribution of each isolate to each pool
 - through a **qPCR tool giving**, for each isolate
 - copy numbers of the parental allele in sporangia/zoospores
 - copy numbers of the parental allele in oospores (if sex)

MULTIPLE INFECTIONS AND ASEXUAL MULTIPLICATION

J. A. J. Clément, H. Magalon, I. Glais, E. Jacquot et D. Andrivon In preparation

What is expected?

- Theory says
 - Host ressources have to be shared
 - Competition for space > more allocation in growth
 - → Prediction : less asexual multiplication in multiple infections

What actually occurs: two different strategies

Collective host exploitation

All host tissue colonised at the end of experiments

 ⇒ Depends on pairs of individual strategies
 ⇒NC+ NC= NC
 ⇒NC+C = C

What if sex is possible?

SEXUAL COMPATIBILITY AND REPRODUCTION STRATEGIES

Question and hypotheses

• Does investing in sexual reproduction alters the investment in asexual multiplication?

• Theory says

- Expressing a new trait (sex) requires part of the ressource budget
- The energetic cost of sex is higher than that of asexual multiplication
- Predictions
 - → Asexual multiplication should decrease
 - ➔ for both C and NC isolates

Roff, 1992: Stearns, 1992; Lenormand, 2010

Experimental testing

1. Defining the strategies of the A2 isolates through double inoculation

2. Comparing double inoculations with mixed compatible inoculations

Again two strategies

% difference of invested copies relative to control (double infection)

• NC isolates

- Invest mainly in sexual offspring
- Produce fewer asexual offspring in incompatible than in compatible pairings
- > Survival specialists?

• C Isolates

Asexual copies

- Invest mainly in asexual multiplication
- Perform less in compatible pairings

17

- > Invasion specialists?

Total copies (asex+sex)

To sum up

• Two reproductive strategies

- Coexisting within populations
- •With evolutionary / adaptive significance
- •With ecological consequences

Never shown before in parasites

Explaining the coexistence

• Hypothesis:

- Different epidemic dynamics for both groups
 - ➔ possible verification through population surveys

Exploring the consequences with evolutionary ecology models

- Integrate parameters
 - − Relative to the host ⇒ resistance
 - Relative to the pathogen ⇒ LHT and trade-offs
- Reasonning at longer time scales
 - Seasonnality
 - Primary inoculum build-up
- Helping with resistance breeding and management
 - Testing resistance durability *a priori*

Thank you

• Roselyne, Isabelle and Claudine

- Frédéric Hamelin
- Magda Castel
- Ludovic Mailleret

• All of you for your attention!