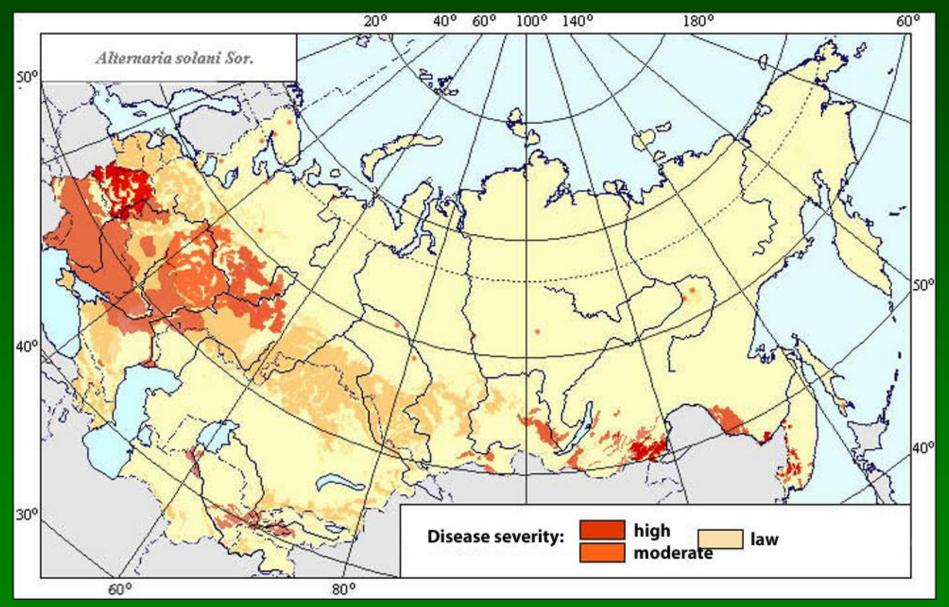
Species composition and resistance to fungicides of Russian potato and tomato early blight pathogens



Lyudmila Kokaeva, Sergey Elansky Moscow M.V. Lomonosov State University, Biological faculty

Alexander Nikolaev

Agricultural research institute of the Kostroma region

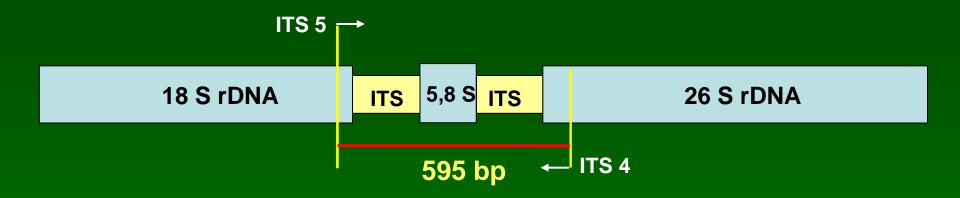
Distribution of potato and tomato early blight in Russia

www.agroatlas.ru

Collecting blighted samples

Samples with typical symptoms were used for isolation

Locations of sampling sites


РОССИЙСКАЯ ФЕДЕРАЦИЯ. ФЕДЕРАТИВНОЕ УСТРОЙСТВО

190 isolates from 7 locations were tested

Composition of species

Location of the sequenced region and positions of primers ITS 5 and ITS 4

Name of primer	Sequence
Forward primer ITS 5 (White et al, 1990)	5' – GGAAGTAAAAGTCGTAACAAGG
Reverse primer ITS 4 (White et al, 1990)	5' – TCCTCCGCTTATTGATATGC

Sequence of this region allows to identify the small-spore species, A. solani, A. tomatophila, A. infectoria.

ITS 5 – ITS 4 regions of 33 strains were sequenced

Tatarstan PL 21 A. ALT Tatarstan PL 18a A. TEN Tatarstan PL 50 A. ALT Tatarstan PL 61 A. ALT Kostromskaya PL 10 A. TEN Kostromskaya PL 6 A. TEN Kostromskaya PL 15 A. ALT Kostromskaya PL 11a A. ALT Kostromskaya PL 3b A. ALT Kostromskaya PL64a A. ALT Kostromskaya PL9 A. TEN Far East TL 106-021 A. ARB Far East TL 146-021 A. ALT. Moskovskaya PL 06-3 A. TEN Moskovskaya PL 03/1 A. ALT Moskovskaya PL A. ALT Mariy EI TL 49(2)A.ALT Mariy EI TL12b A. TEN Astrakhanskaya TF 1g A. ALT Leningradskava KL 44 A. TEN Leningradskaya PL A. TEN Leningradskaya PL 23 A.ALT Nizhegorodskaya PL 5 A. ALT Kavkaz PL A. ALT A. arborescens STE-U4244 (Genbank) A. tenuissima EGS 34-015 (Genbank) A. tomatophila_CBS109156 (Genbank) Far East TF 104-031 A. SOL Far East TL 043-021 A. SOL - Far East PL 044-011 A. SOL A.solani CBS 111.44(Genbank) Astrakhanskaya TF 11a A. SOL Astrakhanskaya TL 14e/2 A. SOL Astrakhanskaya TL 125 A. SOL. Far East TL 104-021 A. SOL A. infectoria EGS_27-193 (Genbank) - USA Suffolk 492-011 A. INF.

Kostromskaya PL 5 A. INF.

Smallspore strains

Largespore strains

A. infectoria

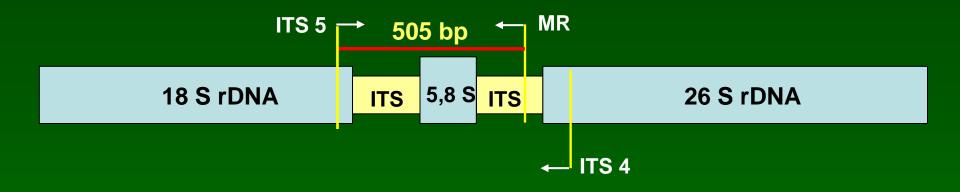
List of the identified species:

Alternaria solani Sorauer

A. infectoria E.G. Simmons

Group of small – spore species After morphological investigation this group was devoted to 3 species: A. alternata (Fr.) Keissl. A. infectoria E.G. Simmons A. tenuissima (Kunze) Wiltshire

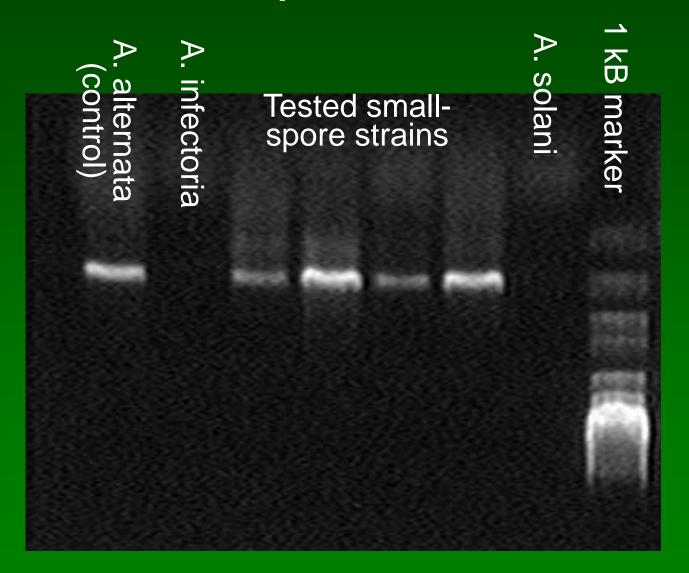
Comparison of ITS 4 – ITS 5 regions of A. alternata and A. solani


ITS A.	alter	rnata - A. solani	
Query	1	GGAAGTAAAAGTCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAGGGATCATTACACAAA	60
Sbjct	2	GGAAGTAAAAGTCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAGGGATCATTACACAAA	61
Query	61	TATGAAGGCGGGCTGGAACCTCTCGGGGT-TACAGCCTTGCTGAATTATT-CACCCTTGT	118
Sbjct	62	TATGAAGGCGGGCTGGCACCTCCCGGGGTGGCCAGCCTTGCTGAATTATTCCACCCGTGT	121
Query	119	CTTTTGCGTACTTCTTGTTTCCTTGGTGGGTTCGCCCACCACTAGGA-CAA-ACATAAAC	176
Sbjct	122	CTTTTGCGTACTTCTTGTTTCCTTGGTGGGCTCGCCCACCACAAGGACCAACCCATAAAC	181
Query	177	C-TTTTGTAATTGCAATCAGCGTCAGTAACAAAT-TAATAA-TTACAACTTTCAACAACG	233
Sbjct	182	CTTTTTGCAATGGCAATCAGCGTCAGTAAC-AATGTAATAATTTACAACTTTCAACAACG	240
Query	234	GATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTG	293
Sbjct	241	GATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTG	300
Query	294	CACTCTCTATC-AGCAAAGGTC	353
Sbjct	301	C AGG	360
Query	354	CGCTCTCT-TCCAGCCCCAAGGTC	413
Sbjct	361		420
Query	414	-TCTAGCTTTGCTGGAGACTCGCCTTAAAGTAATTGGCAGCCGGCCTACTGCTTTCGGAG	472
Sbjct	421	GTCTCCCCTTCCGGGAGACTCGCCTTAAAGTCATTGGCAGCCCGCCTACTGGTTTCGGAG	480
Query	473		529
Sbjct	481	CGCAGCACAAGTCG <u>CGCTCTCT-TCCAGCCCCAAGGTC</u> TAGCATCCACCAAGCCTTTTT	539
Query	530		588
Sbjct	540	TTCAACTTTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAACCATATCAATAAGC	599
Query	589	GGAGGAA 595	
Sbjct	600	GGAGGAA 606	

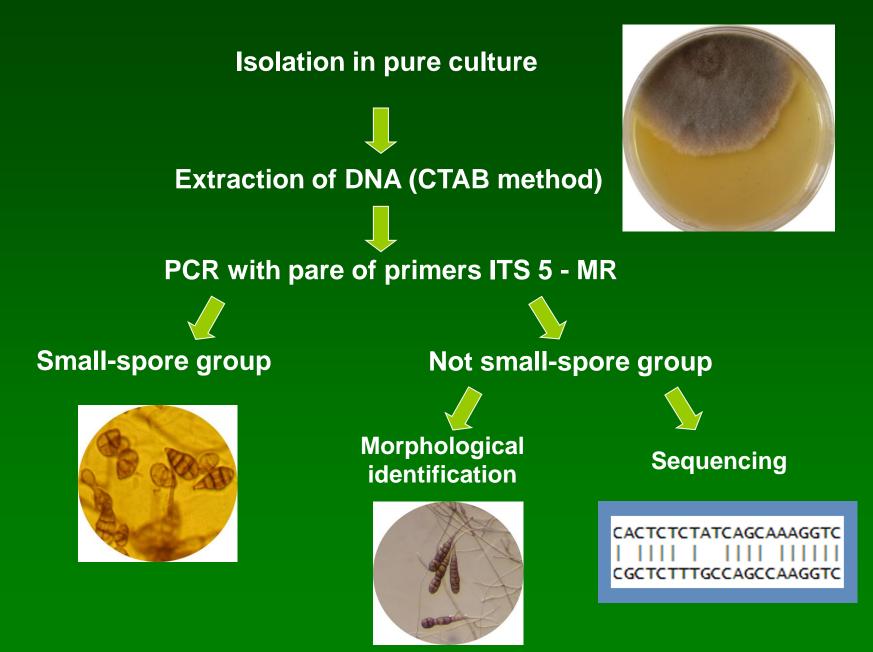
Comparison of ITS 4 – ITS 5 regions of A. alternata and A. infectoria

А.	a٦	ternata	-	А.	infectoria
----	----	---------	---	----	------------

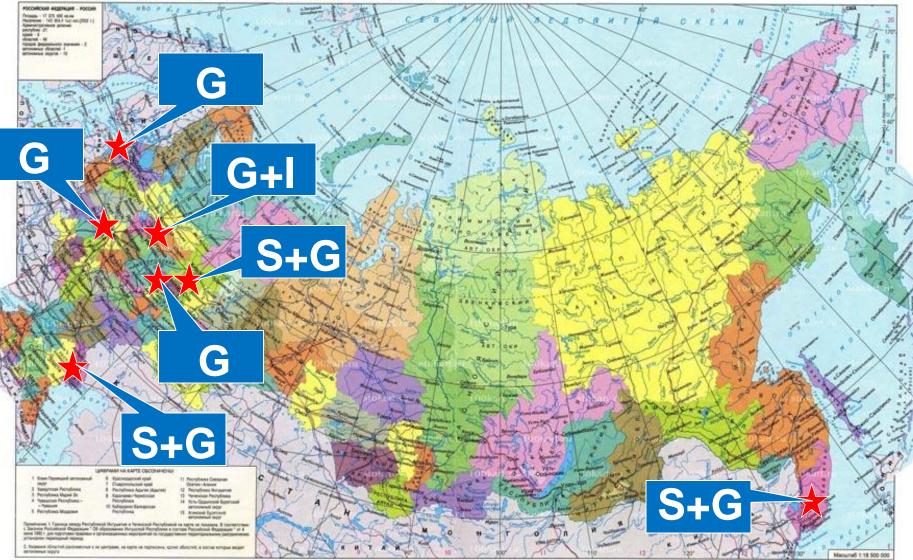
Query	1		60	
Sbjct	1	GGAAGTAAAAGTCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAGGGATCATTACACAA-	59	
Query	61	TATGAAGGCGGGCTGGA-ACCTCTCGGGGTTACA	93	
Sbjct	60	I I	119	
Query	94	-GCCTTGCTGAATTATTCACCCTTGTCTTTTGCGTACTTCTTGTTTCCTTGGTGGGTTCG	152	
Sbjct	120	GGCCCTGCTGAATTATTCACCCGTGTCTTTTGCGTACTTCTTGTTTCCTGGGTGGG	179	
Query	153	CCCACCACTAGGACAAAC-ATAAACCTTTTGTAATTGCAATCAGCGTCAGTAACAAATTA	211	
Sbjct	180	CCCGCCCTCAGGACCAACCACAAACCTTTTGCAATAGCAATCAGCGTCAGTAACAACGTA	239	
Query	212	AT-AATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGA	270	
Sbjct	240	ATTAATTACAACTTTCAACAACGGATCT		
Query	271	AATGCGATAAGTAGTGTGAATTGCAGAA CACTCTCTATCAGCAA	AGGT	2
Sbjct	300	AATGCGATACGTAGTGTGAATTGCAGAA		
Query	331	TGCGCCCTTTGGTATTCCAAAGGGCATG CGCTCTTTGCCAGCCA	AGGT	2
Sbjct	360	TGCGCCCTTTGGTATTCCAAAGGGCATG		
Query	391	TGCTTGGTGTTGGGCGTCTTGTCTCTAGCTTTGCTGGAGACTCGCCTTAAAGTAATTG	448	
Sbjct	420	TGCTTGGTGTTGGGCGTCTTTTGTCTCCAG-TTCCCTGGAGACTCGCCTTAAAGTCATTG	478	
Query	449		508	
Sbjct	479	GCAGCCGGCCTACTGGTTTCGGAGCGCAGCACAAGTCCCGCTCTTTGCCAGCCA	537	
Query	509	AGCATCCATTAAGCC-ttttttCAACTTTTGACCTCGGATCAGGTAGGGATACCCGCTG	567	
Sbjct	538	AGCGTCCAGCAAGCCTTTTTTTCAACCTTTGACCTCGGATCAGGTAGGGATACCCGCTG	597	
Query	568			
Sbjct	598	AACTTAACCATATCAA		


Location of the sequenced region and positions of primers ITS 5 and MR

Name of primer	Sequence
Forward primer ITS 5 (White et al, 1990)	5' – GGAAGTAAAAGTCGTAACAAGG
Reverse primer MR	5' – GACCTTTGCTGATAGAGAGTG


Pare of primers ITS 5 – MR allow to distinguish species with small spores from A. solani and A. infectoria

Application of primers ITS 5 and MR for Alternaria species identification


190 Alternaria sp. strains were tested

Identification of species

Species of Alternaria in different regions

РОССИЙСКАЯ ФЕДЕРАЦИЯ. ФЕДЕРАТИВНОЕ УСТРОЙСТВО

S – A. solani, I – A. infectoria, G – group of small spore species

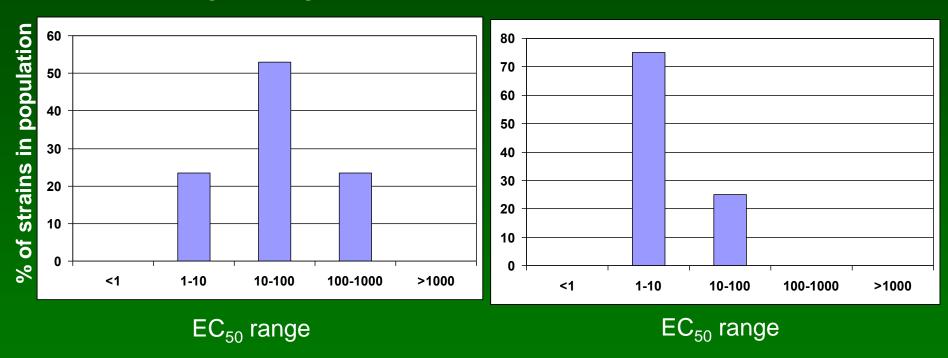
Resistance to fungicides

Testing of the resistance to fungicides

control

100 mkg/ml 1000 mkg/ml

Alternaria alternata

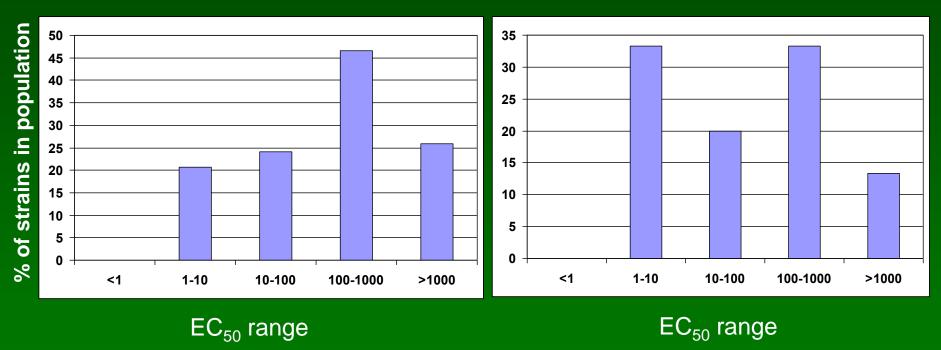


EC₅₀ – concentration of the fungicide in agar media twice decreasing the growth rate of the colony. Concentrations 0,1; 1; 10; 100; 1000 mkg/ml were used for testing.

Resistance to mancozeb

Small spore species

A. solani

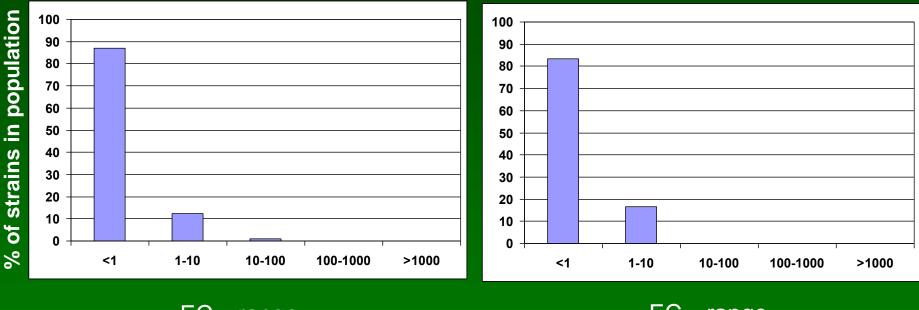


There were no highly resistant *A. solani* strains to mancozeb in all tested field populations.

Resistance to chlorothalonil

Small spore species

A. solani



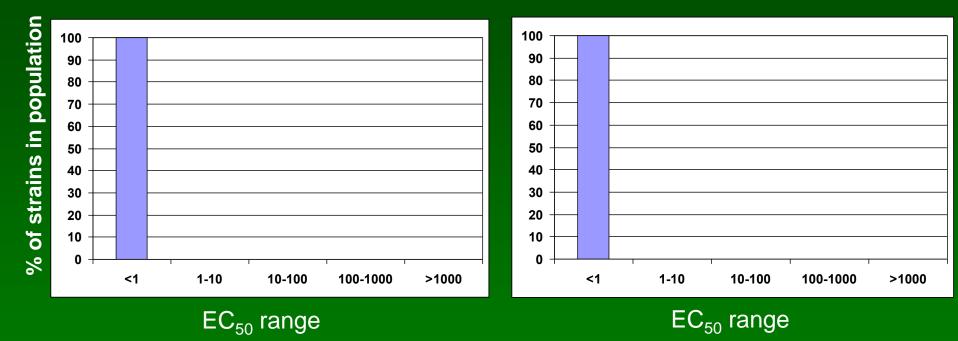
There were no differences in resistance of *A. solani* and small spore species to chlorothalonil. Highly resistant strains were found in all tested field populations.

Resistance to fludioxonil

Small spore species

A. solani

EC₅₀ range


EC₅₀ range

All tested strains were very sensitive to fludioxonil.

Resistance to difenoconazole

Small spore species

All tested strains were very sensitive to difenoconazole

Conclusions

Species with small spores (morphologically identified as A. alternata, A. tenuissima, and A. arborescens) were found in all tested populations,

- A. solani was found in Astrakhan region, Mari-El, and Far East,
- A. infectoria was found only one strain in Kostroma region.
- All tested strains were highly sensitive to fludioxonil and difenokonazole
- All tested A. solani strains were sensitive to mankozeb, but there was many resistant strains between small-spored Alternaria.
- Majority of strains were resistant to chlorothalonile.

Thank you for your attention!