# The changing *Phytophthora infestans* population: implications for late blight epidemics and control

By Allison Chapman – PhD student

Potato Council Funded Studentship

Supervisors:

**Alison Lees** 

**David Cooke** 

Louise Cooke – AFBI, Northern Ireland

Paul Birch - UoD



The James Hutton Institute

## P. infestans Population Change

- Increase in the A2 mating type in UK populations has been observed
- Increase in A2 is due to genotype 13\_A2
- Isolates of 13\_A2:
  - highly aggressive
  - overcome most R genes
  - resistant to the fungicide Metalaxyl





The James Hutton Institute The changing *Phytophthora infestans* population: implications for late blight epidemics and control

#### Main aims:

- investigate how *P. infestans* has changed and what the implications of this change mean for management
- Effect of temperature on infection and disease
- Competition between P. infestans genotypes



#### **Isolate Selection**

 Isolates comprising 11 genotypes (characterised using SSR markers)

Collected between 2006-2008 from many cultivars across the UK

|          |             | The Jam        |  |
|----------|-------------|----------------|--|
| Genotype | Isolate No. | Hutto          |  |
| 1_A1     | 2           | misc           |  |
| 10_A2    | 4           | <b>3</b><br>10 |  |
| 13_A2    | 10          |                |  |
| 17_A2    | 2           | 42             |  |
| 2_A1     | 5           | 13             |  |
| 3_A2     | 2           |                |  |
| 6_A1     | 9           |                |  |
| 7_A1     | 5           | _ 7,8          |  |
| 8_A1     | 5           | 1              |  |
| A1 misc  | 10          | 6              |  |
| A2 misc  | 4           | 2              |  |

### Why is temperature important?



The dominance of 13\_A2 is thought to be temperature related, in particular with the lower temperatures

- Aggressiveness test at 13°C, 15°C and 18°C

- The Smith Period
  - "At least two consecutive days where min temperature is 10°C or above and on each day at least 11 hours when the relative humidity is greater than 90%"



#### Results



Approx. 50% of isolates infected at 6°C

I Isolates representing 10/11 genotypes infected at 6°C





#### **Summary**

- P. infestans infected and grew at temperatures below 10°C
  - infection at below 10°C is not genotype related
  - this has important implications for blight forecasting
  - more windows of opportunity for infection
  - Other work
    - Diurnal experiment
    - Gradient was set at 6°C to 20°C.

Gradient switched with the light cycle
 (16 hour light 8 hour dark) allowing many
 temperature combinations to be
 examined

#### Light Period (16 hours)





#### **Summary**

- *P. infestans* infected and grew at temperatures below 10°C
  - infection at below 10°C is not genotype related
  - this has important implications for blight forecasting
  - more windows of opportunity for infection
  - Other work
    - Diurnal experiment
    - Gradient was set at 6°C to 20°C.

Gradient switched with the light cycle
 (16 hour light 8 hour dark) allowing many
 temperature combinations to be
 examined

Dark Period (8 hours)





#### Competition



Aggressiveness testing showed that at 15°C 13\_A2 was not the most aggressive genotype

What other mechanisms could cause dominance?

Competition has been described as the ability of an individual to inhibit another individual, whilst resisting inhibition

#### **Competition field study**



- Two cultivars were used
- Cara (resistant)
- Maris Piper (susceptible)
- The trial involved three treatments
  - 13\_A2 + 6\_A1
  - 13\_A2 + 7\_A1
  - 13\_A2 + 8\_A1
- Inoculation
  - Two corners of the plots



#### **Plot Diagram**



#### Results



Disease was first observed 16 days after inoculation and progressed to 62 days after inoculation



 Min temperature below 10°C after inoculation

Slower epidemic on Cara compared with Maris Piper as expected



% blight for each cultivar over all plots

#### **Results - Cultivar**



- There is significant difference between cultivars for disease severity (P≤0.001)
- Plant 1 and 16 have the most disease as they were inoculated.
- Spread from plant 1 and from plant 16 appears to be equal on Cara
- Spread from plant 16 progresses
   less to its neighbouring plants
   than from plant 1 on Maris Piper

| 1 | 5 | 9  | 13 |
|---|---|----|----|
| 2 | 6 | 10 | 14 |
| 3 | 7 | 11 | 15 |
| 4 | 8 | 12 | 16 |



#### **Results - Treatment**

 All plants have similar blight scores, except for plant 16 inoculated with 6\_A1

Inoculation with 13\_A2 + 6\_A1
causes significantly more disease on two dates, with the most significant difference being on the last date

| 1 | 5 | 9  | 13 |
|---|---|----|----|
| 2 | 6 | 10 | 14 |
| 3 | 7 | 11 | 15 |
| 4 | 8 | 12 | 16 |



Days after inoculation (days)



### **Results - Genotype**



Sampling

- four leaflets with single lesions were taken from each plant
- FTA cards were used

13\_A2 is the most prevalent genotype



Pie chart showing the % of each genotype found in all plots. Inoculation of all plots with 13\_A2 accounted for.

#### **Results – Inoculated Plants**



Disease severity caused by 7\_A1 and 8\_A1 is not significantly different

 6\_A1 causes significantly more disease than other genotypes



Genotype

| 1 | 5 | 9  | 13 |
|---|---|----|----|
| 2 | 6 | 10 | 14 |
| 3 | 7 | 11 | 15 |
| 4 | 8 | 12 | 16 |

#### **Summary**

Competition



- Cara is more resistant to all genotypes compared with Maris Piper

- 13\_A2 is the most prevalent genotype

- However, dominance of 13\_A2 is not due to aggressiveness alone

In vitro studies at 15°C do not indicate that 13\_A2 is more aggressive, but some aggressiveness/fitness components are having an effect in the field

- temperature may have an effect



#### Plot 6 – Sample date one





#### Plot 6 – Sample date two





#### **Plot 6 – Sample date three**





#### Plot 6 – Sample date four



