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SUMMARY
In this paper we present the status of investigations into the genetic diversity of Phytophthora 
infestans populations in Europe and an update on the means of storing, collating and interpreting 
such information in a central database. Simple Sequence Repeat markers (SSR), also termed 
microsatellites, remain the method of choice for examining population diversity as they are rapid, 
robust and resolve population structure at a level appropriate for identifying and discriminating 
clonal lineages and exposing the signature of sexual recombination in highly diverse populations. 
SSR analysis has progressed from 3 panels of 3-5 multiplexed markers to a single multiplex assay 
in which 12 markers are run in a single PCR. Frequent discovery of more than two alleles at a 
single SSR locus in some P. infestans populations suggests changes in chromosome complements. 
These different ploidy levels within a population have proved challenging for most methods of 
population genetic analysis but recent publications provide a way forward and are discussed. Several 
comprehensive national studies on P. infestans diversity are underway within Europe and, combined 
with some international comparisons will clarify the recent evolutionary history of this damaging 
pathogen. SSRs are considered selectively neutral markers. There is interest in examining sequence 
diversity in effector genes that are under selection pressure, in order to understand the evolution 
of P. infestans virulence/pathogenicity. In combination with neutral SSR data, effector sequences 
will provide a different perspective on pathogen diversity at local and international scales. The 
Eucablight database that was developed in the ‘Eucablight’ EU funded Concerted Action project 
is also evolving and we briefly describe its status as it merges with the larger and more flexible 
‘cropproblem’ database that holds data for the Wheat Rust Toolbox which forms part of the Global 
Cereal Rust Monitoring System. 
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BACKGROUND
We have reported previously the rationale for examining P. infestans populations and the benefits 
of a centralised database to store information in a standard format (Cooke et al. 2007b; Cooke 
et al. 2009; Cooke and Lees 2004; Hansen et al. 2007). Global populations of P. infestans are 
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characterised by the migration and domination of clonal lineages in many regions (e.g. Fry et al. 
2009) with evidence of sexual recombination in others such as Mexico (Goodwin et al., 1992; 
Grunwald and Flier 2005) and Scandinavia (Brurberg et al. 1999; Brurberg et al., 2011; Widmark 
et al. 2007). Well documented cases of host resistance breakdown and fungicide resistance are 
testament to the challenges of managing potato blight. The success of integrated control strategies 
depends on our understanding of the pathogen diversity at local, national and international scales 
and the mechanisms and rates of pathogen evolution. The theoretical advantages of planned host 
resistance deployment strategies have been demonstrated (Skelsey et al. 2010) but their success 
hinges on understanding the stability of such sources of resistance in the face of a diverse repertoire 
of rapidly evolving pathogen effectors (Haas et al. 2009).

UPDATES ON PROGRESS

SSR markers and their analysis 
SSR markers have been developed by at least three research groups (Knapova et al. 2001; Lees et al. 
2006 ; Li et al. 2010) and used in various combinations (Knapova and Gisi 2002; protocols in www.
eucablight.org). Multiplexing (the amplification of more than one locus in a single PCR mix) has 
been applied to increase the efficiency of the approach. Not all markers are equally informative (i.e. 
the polymorphism information content or PIC score varies) or easy to score due to levels of stutter 
(e.g. Brownstein et al. 1996). This has led to different numbers of markers being applied in different 
studies (e.g. Brurberg et al. 2011). A collaboration between Wageningen University and The James 
Hutton Institute has resulted in a multiplex assay which includes 12 of the most informative and 
easy-to-score markers (Li et al. 2012). Step-by-step protocols will be published in the near future on 
the Euroblight web site (www.eucablight.net). This 12-plex assay has been used on several thousand 
isolates in the UK and the Netherlands and is proving a rapid and efficient means of genotyping and 
identifying lineages according to their multi-locus genotype (MLG). 

In a diploid organism, such as P. infestans, a specific SSR locus may be homozygous, in which case 
PCR amplification generates a single SSR allelic peak, or heterozygous resulting in two peaks on 
the electropherogram (Fig. 1). The occurrence of more than two peaks has been observed in our 
studies and is reported in the literature (Lees et al. 2006; Brurberg et al. 2011). Differences in ploidy 
have been observed in P. infestans (e.g. Tooley and Therrien 1991; Whittaker et al. 1991) and are 
consistent with these observations (Fig 1). Most methods for population genetic analysis are designed 
for examining diploid or haploid populations but analysis of other levels of ploidy and, in particular, 
populations comprising mixtures of isolates of different ploidies have proved challenging. However, 
a recent method (Bruvo et al. 2004) has been implemented in R as the package POLYSAT (Clark 
and Jaseniuk 2011). POLYSAT is capable of appropriately interpreting SSR data in populations of 
mixed ploidy to generate Bruvo genetic distances, principal co-ordinate analysis and F-statistics and 
will improve the interpretation of such P. infestans populations.
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Figure 1. SSR peaks at the D13 locus of two isolates of P. infestans genotype 13_A2. In this marker, prominent 
but consistent stutter peaks form within each cluster, the largest being scored. a) An isolate with alleles 136 bp 
and 154 bp in which the height of the 136 bp peak is consistent with it being present in two copies compared 
to the lower 154bp peak. b) A different isolate of the same clonal lineage (identical at all other loci) but with 
an additional 144 bp allele that is consistent with an 8bp (4 dinucleotide) mutation of one of the 136 bp allele 
copies. Note the peak height ratios are closer to 1:1:1 than in a).

Current studies on pathogen diversity
The Eucablight database currently holds data on over 25,000 isolates, with SSR data for 5,776 
isolates from fifteen European countries. This is a comprehensive resource but a combination of 
some notable absences in the geographic coverage of Europe and the problem of variable ploidy, 
discussed above, has hindered an analysis of the evolutionary history on a pan-European scale. 
Such issues should soon be resolved as many comprehensive datasets now fill these gaps. Examples 
include; the Netherlands (van den Bosch et al. 2012), Nordic regions (Brurberg et al. 2011; Grönberg 
et al. 2010), Northern Ireland and the Republic of Ireland (Kildea et al., 2010) France (Montarry 
et al. 2010; R. Corbiere pers. comm.), Poland (Chmielarz et al. 2010), Hungary (J. Bakonyi and 
Z. Nagy pers. comm.) as well as data generated at The James Hutton Institute on isolates provide 
by BayerCropScience and Syngenta as a part of their monitoring programmes. The inclusion of 
data from studies on isolates from North, Central and South America (F. Martin, M. Coffey, N. 
Grunwald and D. Cooke pers. comm.) will add a new dimension, placing the European population 
in a global perspective. 

Effector sequencing
SSR markers as discussed above are highly polymorphic, making them a powerful tool for a 
relatively rapid and affordable view of population diversity and isolate discrimination even within 
clonal lineages; for example in P. ramorum clones, (Goss et al. 2009). For examining population 

all markers are equally informative (i.e. the polymorphism information content or PIC score varies) or easy to score due to 
levels of stutter (e.g. Brownstein et al. 1996). This has led to different numbers of markers being applied in different studies 
(e.g. Brurberg et al. 2011).  A collaboration between Wageningen University and The James Hutton Institute has resulted 
in a multiplex assay which includes 12 of the most informative and easy-to-score markers (Li et al. 2012). Step-by-step 
protocols will be published in the near future on the Euroblight web site (www.eucablight.net). This 12-plex assay has been 
used on several thousand isolates in the UK and the Netherlands and is proving a rapid and efficient means of genotyping 
and identifying lineages according to their multi-locus genotype (MLG).  
 
In a diploid organism, such as P. infestans, a specific SSR locus may be homozygous, in which case PCR amplification 
generates a single SSR allelic peak, or heterozygous resulting in two peaks on the electropherogram (Fig. 1).  The 
occurrence of more than two peaks has been observed in our studies and is reported in the literature (Lees et al. 2006; 
Brurberg et al. 2011).  Differences in ploidy have been observed in P. infestans (e.g. Tooley and Therrien 1991; Whittaker 
et al. 1991) and are consistent with these observations (Fig 1). Most methods for population genetic analysis are designed 
for examining diploid or haploid populations but analysis of other levels of ploidy and, in particular, populations 
comprising mixtures of isolates of different ploidies have proved challenging.  However, a recent method (Bruvo et al. 
2004) has been implemented in R as the package POLYSAT (Clark and Jaseniuk 2011). POLYSAT is capable of 
appropriately interpreting SSR data in populations of mixed ploidy to generate Bruvo genetic distances, principal co-
ordinate analysis and F-statistics and will improve the interpretation of such P. infestans populations. 

Figure 1. SSR peaks at the D13 locus of two isolates of P. infestans genotype 13_A2.   In this marker, prominent but consistent stutter peaks form 
within each cluster, the largest being scored.  a) An isolate with alleles 136 bp and 154 bp in which the height of the 136 bp peak is consistent 
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Current studies on pathogen diversity 
The Eucablight database currently holds data on over 25,000 isolates, with SSR data for 5,776 isolates from fifteen 
European countries. This is a comprehensive resource but a combination of some notable absences in the geographic 
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diversity at a slightly coarser phylogenetic resolution i.e. looking back further into the evolutionary 
history of the species, DNA sequence data has advantages (see Cooke and Lees 2004). Examples 
include sequencing selectively neutral genes to examine the genealogical history of P. infestans 
(Gómez-Alpizar et al. 2007) and as support for P. andina being a hybrid of P. infestans and another, 
as yet undescribed, taxa (Goss et al. 2011). Rapid advances in the discovery of effector genes, the 
products of which affect host cell function to allow pathogen infection, are providing opportunities 
to explore the evolutionary drivers of pathogenicty in P. infestans. The genes responsible for virulence 
against known resistances in the R gene differential series have now been identified (reviewed in 
Vleeshouwers et al. 2011) within a group of over 500 effectors with a distinct RXLR motif in the 
P. infestans genome (Haas et al. 2009). Sequencing a panel of these effectors amongst isolates of 
different MLG, defined by SSR markers, is underway at The James Hutton Institute. To date, the 
RXLR allelic diversity and MLG correspond closely. Avr2 provides an interesting example in which 
the R2 gene is ‘defeated’ by two mechanisms in different MLGs. In isolates of many MLGs the Avr2 
gene is present and recognized by R2 resulting in resistance. The non-synonymous (replacement) 
single nucleotide polymorphisms (SNPs) reported did not affect this recognition. In isolates of 
other MLGs the Avr2 gene were deleted from the genome and R2 thus ‘defeated’. An alternative 
mechanism of overcoming R2 was also noted in isolates that were able to silence expression of the 
Avr2 gene (Gilroy et al. 2010). Such studies of the sequence diversity provides a means of directly 
examining the evolution of pathogenicity and, in the longer term, supports strategies for selecting 
and deploying host resistance that is more likely to be durable (Vleeshouwers et al. 2011). 

The evolving Eucablight database
A major achievement of the EU concerted action Eucablight project was databases of P. infestans 
pathogen diversity and potato host resistance coupled with analysis tools and a web-based interface 
to summarise and view the data (www.eucablight.org). These databases and interfaces were planned 
by the project partners and implemented in 2003 at the University of Arhus (Lassen and Hansen 
2005; Hansen et al. 2007). Updates to the datasets of both host and pathogen databases have 
continued since the formal Eucablight project completion date in 2006. The web interface performs 
calculations and displays updates ‘on the fly’ so that summaries of all current data may be viewed. 
Both datasets are a valuable resource but it is recognised that improvements to the data upload 
facilities and the web interface for displaying the results are required for the databases to reach 
their full potential. Database and internet technology has evolved since these were designed and, 
as a result of additional funding, the team at the University of Arhus has designed and built a new 
‘crop problem’ database. This database is based on.NET technology and has a broader scope to 
track changes in cereal pathogens within the ‘Eurowheat’ project (www.eurowheat.org; Jørgensen 
et al. 2010) and the rust initiative (rustspore.cimmyt.org, www.wheatrust.org; Hodson et al. 2011). 
Powerful mapping tools are now exploited to present wheat rust population data geographically. 
The Eucablight database will be migrated to this new format and alternative means of uploading 
data from the projects mentioned above will facilitate its expansion. The addition of data from other 
continents is also planned. 
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