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INTRODUCTION
In the Netherlands the total area under potato cultivation amounts to approximately 165.000 ha, 
annually yielding 7.9 million Mg of potato representing a value of about M€790. Potato late blight, 
caused by the oomycete Phytophthora infestans, is the major problem during potato cultivation in 
the Netherlands requiring an annual input of around 1400 tons of active ingredient. The number of 
fungicide applications for potato late blight control varies between 10 and 16 per season inferring a 
cost (chemicals, application and losses) of 125M€ per year, almost 16% of the total farm gate price 
(Haverkort et al. 2008). 
From these figures it is clear that farmers, the potato industry, consumers and the environment 
could greatly benefit from more efficient and environmentally friendly ways to control late blight 
through e.g. the introduction and durable exploitation of host plant resistance. P. infestans however 
is renowned for its ability to adapt under the selection pressure exerted by e.g. the cultivation of 
resistant cultivars. In the past, newly introduced resistance was generally quickly overcome rendering 
the budget, time and effort spent to create it useless. 
Traditionally, potato late blight control heavily relies on frequent (calendar based) applications of 
fungicides supported by preventive cultural measures such as the use of healthy seeds and the timely 
destruction of primary sources of inoculum. Cultivation of resistant cultivars is currently limited, 
mostly due to an overwhelming demand for a limited number of commercially very successful 
cultivars that are also very susceptible to late blight. 
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Integrated pest management (IPM) is a broad based ecological approach to structural agricultural 
pest and disease control that integrates pesticides into a management system incorporating a wide 
range of practices for economic control of a pest. In general, IPM builds on:
1.	Acceptable pest levels with an emphasis on control.
2.	Preventive cultural practices, including host plant resistance.
3.	Monitoring: regular observation of the crop and the pathogen is the cornerstone of IPM.
4.	Mechanical control.
5.	Biological controls.
6.	Responsible use of pesticides.

Additionally, basic epidemiology relates 
emergence of a disease to the disease tetrahedron 
(Figure 1, Zadoks and Schein 1979). Potato late 
blight (or any other plant disease) epidemics can 
only develop when a host is present, the pathogen 
is present and the environment ((micro) climate) 
is supportive for epidemic development. “Man” 
in turn is influenced by the pathogen, the host 
and the environment but also has the capacity to 
influence these three factors himself to (attempt 
to) prevent disease development.
When we compare currently applied potato late 
blight (PLB) control strategies with the theory 
comprised in IPM and the disease tetrahedron, 
inconsistencies become apparent. Calender based 
spray schedules only consider presence of the host. 
When the host is present (in a certain growth 
stage), sprays are applied according to schedule 
assuming the pathogen is also always present 
(in sufficient numbers) and the environment is 
suitable for epidemic development. By definition, 
this results in more sprays than strictly necessary 
and a sub-optimal spray schedule due to sub-optimal spray timing. 
Decision support systems (DSS’s) (e.g. Dacom, Agrovision, NegFry, Phytopre, Simphyt etc.) 
introduced the concept of preventive fungicide applications directly preceding a predicted infection 
event. DSS’s thus take into account the presence of the host and a conducive environment supporting 
epidemic development before spray advice is issued. This results in “spraying when necessary” and 
optimally timed spray applications although it is still assumed the pathogen is simply always present 
in sufficient numbers.
Here we set out to develop and test a more complete PLB IPM control strategy that uses host plant 
resistance as the backbone for PLB control, aims to deliver perfect PLB control AND prevent P. 
infestans from breaking the resistance while using as little chemical input as possible. This paper thus 
aims to introduce and evaluate the next level of IPM (IPM2.0) for potato late blight control allowing 
for a much more durable exploitation of host plant resistance, cheaper PLB control and a strongly 
reduced burden on the environment.
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Figure 1. The disease tetrahedron. The base symbolizes the 

interaction of host, pathogen and environment. Man has 

various effects on each of these, important to the control 

and development of  plant disease epidemics. (Zadoks and 

Schein, 1979). 
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MATERIALS AND METHODS	  

An IPM2.0 control strategy for potato late blight
The control strategy developed and tested uses host plant resistance as the back bone of the control 
strategy. Resistant cultivars are NOT sprayed as long as virulence to the R-gene(s) they contain is 
absent from the local P. infestans population. For this purpose, the local P. infestans population is 
continuously monitored for virulence against the R-gene(s) used during the entire growing season. 
If virulence against the R-gene(s) used is detected, the non-spray strategy is abandoned and replaced 
by a low input control strategy. Spray advice is then calculated on a daily basis using historic and 
forecasted weather to predict potential infection events. Preventive fungicide applications are 
recommended prior to predicted infection events if the residual protection from the previous spray 
application is insufficient. The dose rate of preventive fungicides depends on the resistance level of 
the cultivar: 25% dose rate on highly resistant (HR) cultivars, 50% dose rate on medium resistant 
cultivars (MR) and 100% dose rate on susceptible (S) cultivars. Furthermore, this resistance level 
based dose rate can be further reduced depending on the predicted fungicide degradation during the 
predicted critical period. If a critical period is predicted to last two days during which only half of 
the dose rate applied will be degraded, only half of the resistance level based dose rate will be applied. 
Last, when a spray advice is issued for the resistant cultivars the Distance Weighted Infection 
Pressure (DWIP) is calculated according to Skelsey et al. (2008). When the DWIP value is below 
the threshold, atmospheric conditions are unsuitable for viable aerial transport of sporangia and the 
spray advice is cancelled. 
Host resistance thus truly is the backbone of the control strategy, only supplemented with (preventive) 
fungicide applications when necessary. Curative fungicides are applied when the calculations show 
that the crop is not sufficiently protected and the critical period has started 0.5 day or more ago. 
Summarizing:
•	 A preventive fungicide application is necessary when:
	 - infection event is predicted in the near future AND
	 - the protection level from the previous spray is insufficient AND
	 - �virulence for the R-gene or R-gene combination used is present in the local P. infestans population.
•	 Reduced dose rates of protectant fungicides are used:
	 - on crops with intermediate (50% reduction) or high levels (75% reduction) of resistance AND 
	 - prior to relatively short predicted infection events on all levels of resistance
•	 �Scheduled sprays are delayed by 1 day on resistant cultivars when the Distance Weighted Infection 

Pressure (DWIP, Skelsey et al., 2008) is below the threshold.

Field experiments
Field experiments were carried out in 2010 and 2011 in Lelystad and Valthermond, the Netherlands. 
Randomized block experiments with 6 cultivars and 4 replicates were established each year at both 
locations. Plots measured 8 * 12m. Cultivars included were: Bintje (S), Sante (MR), Bionica (HR), 
Chc containing clone (HR) and a Sto1 containing clone (HR) in Lelystad and Starga (S), Sante (MR), 
Bionica (HR), Chc containing clone (HR) and a Sto1 containing clone (HR) in Valthermond. Plots 
in this randomized block experiment were sprayed according to the advice calculated as described 
above.

Monitoring plots
Scattered across both farms, 20 – 45 unsprayed monitoring plots, each containing six plants of each 
genotype included in the spray experiment were planted. Monitoring plots were not sprayed at all 
during the entire growing season.
Monitoring of virulence
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Monitoring plots were checked at weekly intervals during the growing season. P. infestans lesions were 
counted and sampled followed by removal and destruction of the remaining lesions. A maximum of 
two lesions per genotype, plot and date were sampled, collected in separate Petri dishes containing 
15 ml 1.5% water agar and sent to the laboratory by courier. 
In the lab, the lesion samples from the field experiments were analyzed for Sto1 virulence using a 
TaqMan PCR designed to amplify the Avrblb1/ipiO class I region Li et al. (2012). P. infestans isolates 
lacking class I ipiO were shown to be virulent on Rpi-blb1 (Champouret et al., 2009).
Lesion counts and PCR results were used as indicators for the presence or absence of specific 
virulences in the local P. infestans population.

RESULTS
First lesions on Bintje, Sante, Bionica, Chc1-clone and the Sto1-clone in Lelystad were found on 
respectively 18 July, 25 July, 1 August, 1 August and 8 August 2011. In Valthermond, first lesions 
on Starga, Sante, Bionica, Chc1-clone and the Sto1-clone were found respectively on 18 July, 25 
July, 1 August, 8 August and 15 August 2011. The PCR assay for Sto1 virulence detected Sto1 
virulence in a P. infestans sample originating from Bintje in Lelystad on 25 July and in a P. infestans 
sample originating from the Sto1–clone in Valthermond on 15 August. Both first findings of Sto-1 
virulence triggered a change in the control strategy from non-spraying on the Sto1-clone to a low 
input spray strategy. Results regarding the fungicide input and infection levels in the 2011 spray 
experiment are given in Figure 2. The fungicide input in Figure 2 is expressed as “full dose rate 
equivalents”. Infection is expressed as severity (% infected foliage). From Figure 2 we can see that in 
both locations the fungicide input dramatically decreases with increasing levels of resistance (left to 
right in the graphs). The level of control in Lelystad was excellent with P. infestans completely absent. 
In Valthermond, infection occurred in the susceptible and medium resistant cultivars, not in the 
HR cultivar Bionica and the HR Sto-1 clone. Chc1 plots in Valthermond were marginally infected. 
Apparently, the level of protection of a HR cultivar under a low input PLB control strategy is higher 
than the level of protection of an S or MR cultivar under a much higher fungicide input strategy.
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Figure 2. Results from the 2011 field experiments, fungicides input (, full dose rate equivalents)  and infection  

(% severity).  
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DISCUSSION
This study was initiated within the Dutch Umbrellaplan Phytophthora to help enhance the level 
of sustainability of potato cultivation. The fungicides used to control potato late blight pose a 
major burden on the environment. Reduction of this environmental burden would already greatly 
contribute to enhanced sustainability. As a result a more complete PLB IPM control strategy was 
designed and tested that uses host plant resistance as the backbone for PLB control, aims to deliver 
perfect PLB control AND prevent P. infestans from breaking the resistance while using as little 
chemical input as possible. The results are encouraging, demonstrating the possibilities high levels 
of host plant resistance have to offer with a reduction of the fungicide input of 80% or more. At the 
same time caution is necessary as P. infestans is well known for its ability to adapt under the selection 
pressure exerted by e.g. newly introduced resistance and fungicides. 
Ideally, the R-gene content of cultivars grown under this IPM2.0 control strategy should be designed 
in such a way that it is very difficult to overcome in the first place, even for P. infestans. This means 
R-genes should be stacked in sufficient numbers and cultivars containing a single R-gene should be 
avoided since it can and will serve as a stepping stone for P. infestans to overcome stacks of R-genes. 
The switch from a non- spraying strategy to a low input strategy could then be made when e.g. all 
but one R-gene have been overcome. Monitoring the local P. infestans population thus remains of 
key importance to success. 
Also, application of reduced dose rates hold a risk of exposing P. infestans to sub-lethal concentrations 
of active ingredients. This however only holds in a curative or eradicant application of a fungicide 
when active infections are exposed to sub-lethal concentrations of A.i.’s. In a preventive application, 
P. infestans is not actively growing in the crop and prevention of infection using a combination of 
host plant resistance (e.g. expressed as a very low infection efficiency) supplemented with reduced 
dose rates of fungicides is the goal. The overall resulting protection level of host plant resistance plus 
the fungicide application should at least be equal to the protection level resulting from a fungicide 
applied in the recommended dose rate on a susceptible crop. Results from the 2011 field experiment 
in Valthermond demonstrated that the protection level of a HR cultivar sprayed with reduced dose 
rates of preventive fungicides can even be higher than those on a susceptible cultivar sprayed with 
the recommended dose rate.
This paper thus demonstrates the viability of the next level of IPM2.0 control strategy for potato late 
blight allowing for a much more durable exploitation of host plant resistance, cheaper PLB control, a 
strongly reduced burden on the environment and a more durable growing system as a whole.
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