IPM 2.0 approach to Potato late blight Control

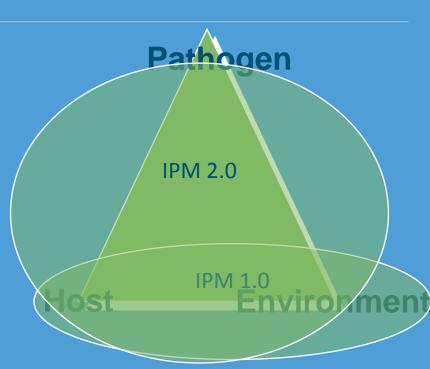
Geert Kessel, Bert Evenhuis, Trudy van den Bosch, Marieke Förch and Huub Schepers

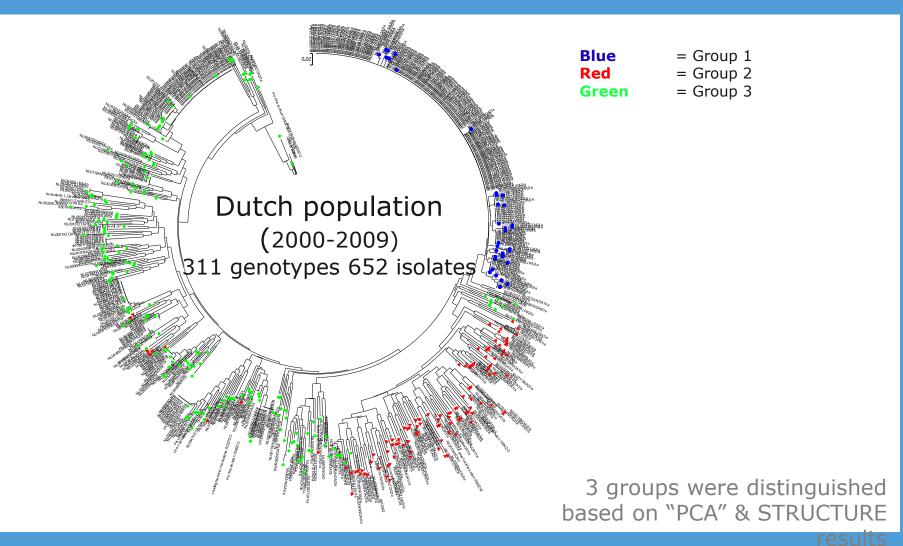
Outline

- Background on IPM
- Phytophthora infestans (in the Netherlands)
- Breeding efforts in Wageningen
- A potato late blight control strategy based on host resistance and *P. infestans* population monitoring

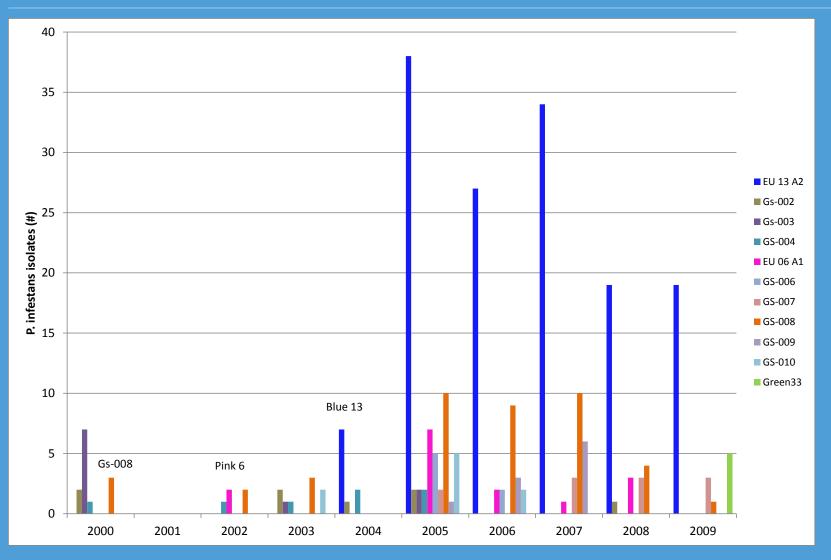
IPM (EU directive 2009)

IPM components:


- Prevention (rotation, sanitation, host resistance, healthy seed, landscaping)
- Monitoring pathogens
- Appropriate, science-based, measures
- Biological \rightarrow Physical \rightarrow non-chemical \rightarrow chemical
- No side-effects
- Sustainable application
- limit chance resistance / virulence development
- Professional use


Disease development & Spray decisions

- Weekly spray schedules ("IPM")
 - Host is present
- IPM 1.0
 - Host is present
 - Weather suitable for infection 1st generation DSS's
- IPM 2.0
 - Host is present
 - Susceptible?
 - Resistant? Which R-genes?
 - Weather suitable for infection (DSS's)
 - For how long?
 - Do spores survive atmospheric transport (DWIP)
 - Pathogen is present
 - How much? (disease pressure)
 - Specific genotypes?
 - Specific virulences?
 - Fungicide resistance?



Phytophthora infestans in the Netherlands

Phytophthora infestans in the Netherlands

___"

WAGENINGEN UR For quality of life

Effectiveness of IPM components

A potato late blight network for Europe Home Partners + Pathogens + Fungicides + Decision support + Publications +							
Case - Denmark Sub-models description Compare submodels Best Practice DSS systems overview Case - Denmark Compare Submodels Best Practice							
and the second second	Weather data	mentation	Barriers	Contribution to input reduction	Organic		
	Crop Rotation	Only on best farms/in some regions/in some countries	Economic/costs AND limited influence on blight	Intermediate	Applicable in organic farming		
	Primary inoculum sources	Only on best farms/in some regions/in some countries	Economic/costs AND risk perception	Intermediate	Applicable in organic farming		
Case A: In Denmark farmers have been using reduced dosages for years.	Planting time and density	Only on best farms/in some regions/in some countries	Economic/costs AND limited influence on blight	Small	Applicable in organic farming		
In Denmark, data from the national monitoring network, weather based infection pressure, cultivar resistance and crop growth stage determine strategies with reduced dosages.	Fertilization	Only on best farms/in some regions/in some countries	Limited influence on blight	Small	Applicable in organic farming		
Dose Model Results 2009	Irrigation	Widespread in practice	Limited influence on blight	Small	Applicable in organic farming		
Cases - the Netherlands	Cultivar resistance	Only on best farms/in some regions/in some countries	Economic/costs AND risks AND risk perception	Lower dependency on chemicals AND Large	Applicable in organic farming		
	Fungicides	Widespread in practice	Economic/costs AND risk perception	Intermediate	Not applicable in organic farming, except that some countries allow use of Copper		
Early The second	DSS	Only on best farms/in some regions/in some countries	Economic/costs AND risk perception	Intermediate	Applicable in organic farming, excluding fungicide modules etc.		
and I is surface to a	Desiccation	Widespread in practice	Risk perception	Small	Applicable in organic farming, excluding dessication by applying chemicals		
Case A: Test of strategies with reduced dose rates. Test of control stategies including use of a DSS to	Harvest	Widespread in practice	Economic/costs Eng	lish (United States)	Applicable in organic farming		

WAGENINGEN UR For quality of life

New technologies

Host plant resistance:

- Identification/cloning of many R-genes
- Marker assisted breeding
- GM breeding (<u>www.DuRPh.nl</u>)

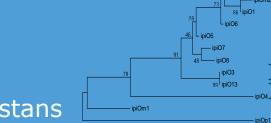
Environment:

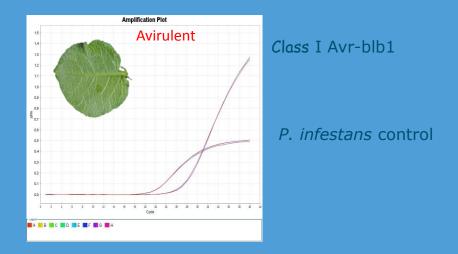
- Improved weather forecasts
- DSS systems
- Precision agriculture

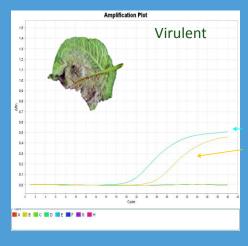
Pathogen:

- Identification of Avr genes incl. variation
- Effectoromics
- Direct PCR assays for virulence in pathogen

	Avr	Ref		
	Avr1	Govers (pers comm)		
S	Avr2	(<u>Gilroy et al., 2011</u>)		
	Avr3a	(Armstrong et al., 2005)		
	Avr3b	(<u>Li et al., 2011</u>)		
	Avr4	(van Poppel et al., 2008)		
	Avrblb1	(Vleeshouwers et al., 2008)		
	Avrblb2	 (<u>Oh et al., 2009</u>) (<u>Vleeshouwers et al., 2011</u>) (<u>Rietman et al., 2012</u>) 		
	Avrvnt1			
	AvrSmira1			
	AvrSmira2	(<u>Rietman et al., 2012</u>)		




Class I Avr-blb1 absent: Virulent


- Real time monitoring
- Q-PCR for Blb1 virulence on P. infestans

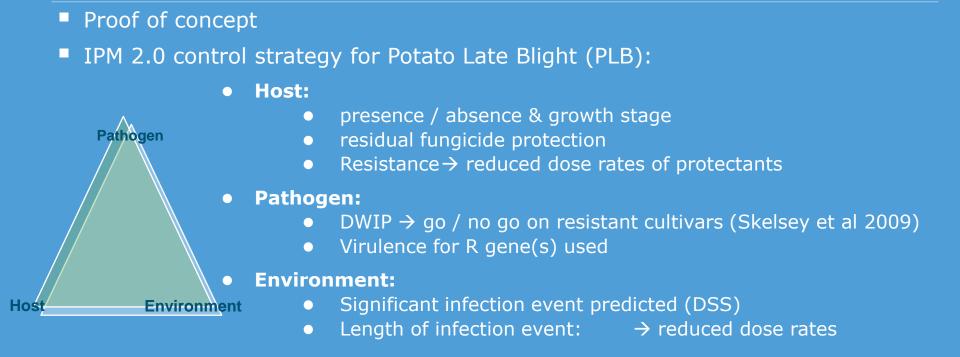
Monitoring for virulence with Avr-blb1

0.02

P. infestans control

Ш

 WAGENINGEN


 UR

 For quality of life

Rpi-blb1

Theo van de Lee Champouret et al 2009 MPMI

An IPM 2.0 control strategy for PLB

• We DO NOT spray unless ... ALL criteria for disease development are full filled

- Goal:
 - More durable and efficient use of resistance and fungicides
 - Durable cultivation of potato

Field Trials

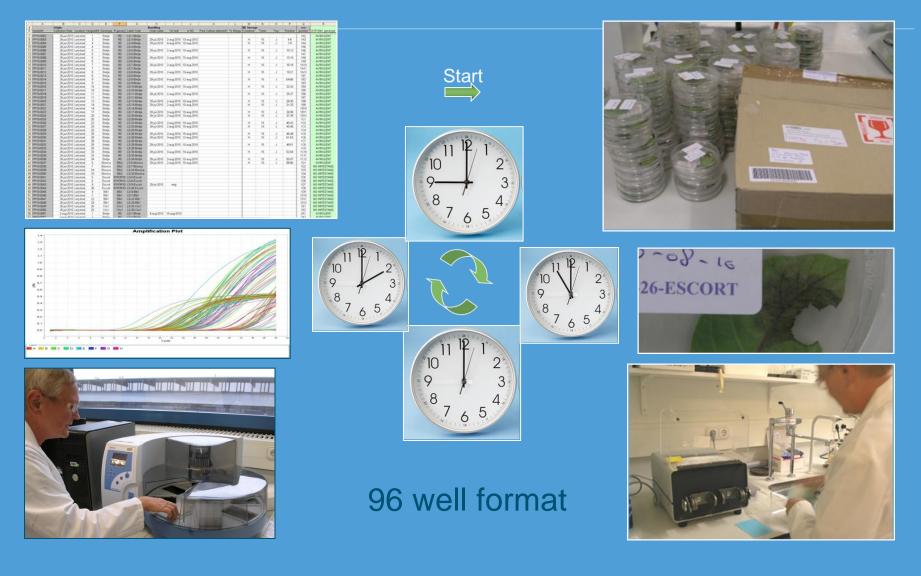
- Two years (2010 & 2011)
- Two locations (Lelystad & Valthermond)
- Default Strategy:
 - Range of host resistance: S MR HR

•	Bintje/Starga	S	100% dose rate protectant
•	Escort (R1R3R10) or Santé (R1R10) MR	50% dose	rate protectant
•	Bionica (Blb2)	HR	25% dose rate protectant
•	Chc1	HR	25% dose rate protectant
•	Blb1	HR	25% dose rate protectant
•	Vnt1 (2010)	HR	25% dose rate protectant

Custom experimental IPM 2.0 DSS → Spray timing

WITH or WITHOUT Continuous monitoring for virulence:

- Weekly lesion counts in monitoring plots
- Weekly lesion samples \rightarrow PCR analysis Blb1 virulence

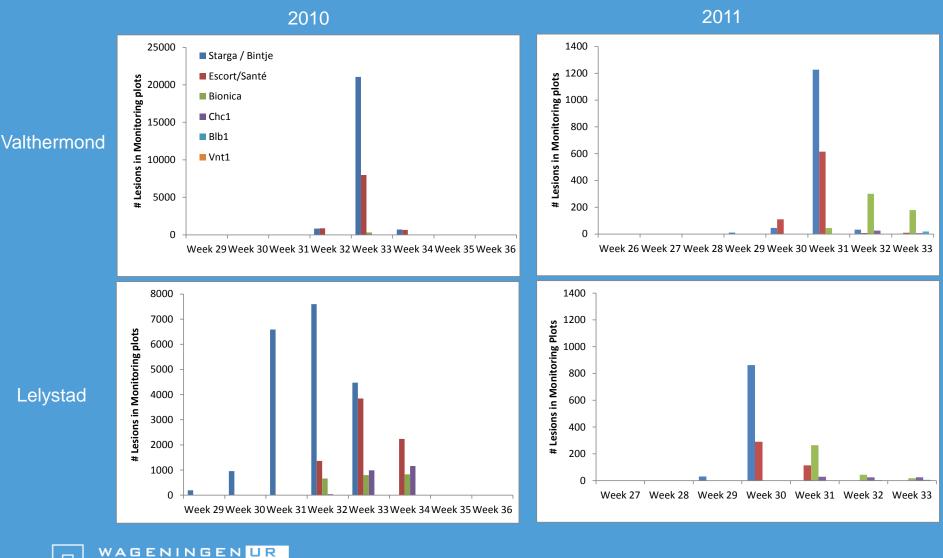


Field trial set up in Lelystad & Valthermond

Avr-Blb1 virulence assay within 5 hrs

Lelystad 2010

Valthermond 2010



Monitoring plots Lelystad & Valthermond

Lesion counts monitoring plots

For quality of life

Avr-Blb1 effector Screening

2010

• NO infections on Blb1 plant material

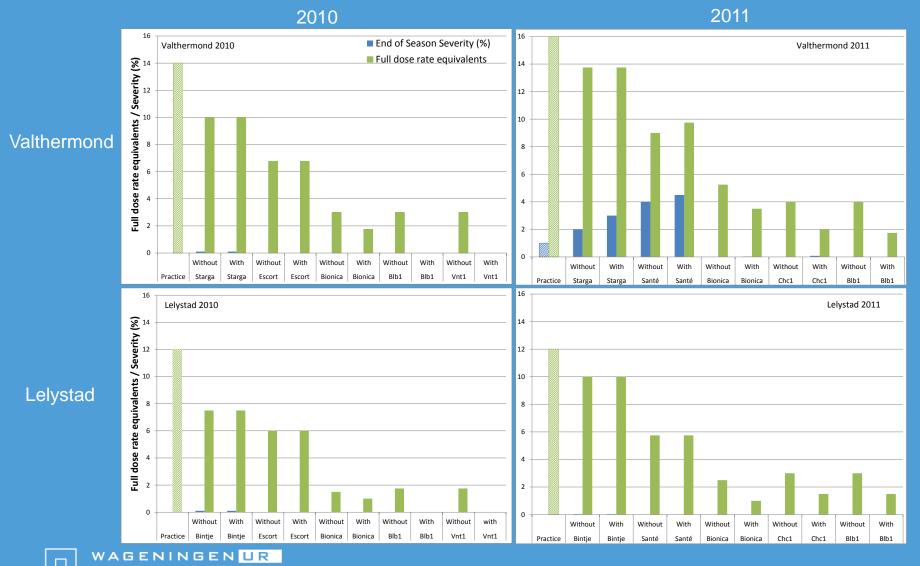
Blb2 LS-17-Bionica		4C10	AVIRULENT
R1R3R10 LS-17-Escort	18-aug-2010	4C11	AVIRULENT
R1R3R10 LS-17-Escort		4C12	AVIRULENT
R1R3R10 LS-18-Escort	18-aug-2010	4D1	AVIRULENT
R1R3R10 LS-18-Escort		4D2	AVIRULENT
Blb2 LS-18-Bionica	18-aug-2010	4D3	VIRULENT
Blb2 LS-18-Bionica		4D4	AVIRULENT
Blb2 LS-19-Bionica		4D5	NO INFESTANS

• PCR: 633 samples, **1 virulent isolate** in Lelystad Confirmed in Bio Assay!

2011


- First infections on Blb1 plant material:
 - Lelystad: 8 August 2011
 - Valthermond: 15 August
- First PCR positive Blb1 virulent isolates:
 - Lelystad: 25 July 2011 (Bintje & Bionica)
 - Valthermond:

15 August 2011 (Blb1 plant)



Results

Valthermond 2011

Results

For quality of life

Conclusions

- The full potential of IPM in PLB control is not yet realized, ... not even close!
- Ample room for improvement IF host resistance is introduced
- P. infestans highly adaptive

 Resistance should be designed / introduced in the most durable way (stacking of R-genes, multilines, landscaping etc.)
- Resistance should be managed after introduction. It's NOT a silver bulet
- Fungicides remain an integral part of the control strategy but input is lower
- Spin off of IPM 2.0 control strategy for PLB to other "aerial" pathosystem e.g. rusts & mildews in cereals, downy mildew in grapes, apple and pear scab ...

