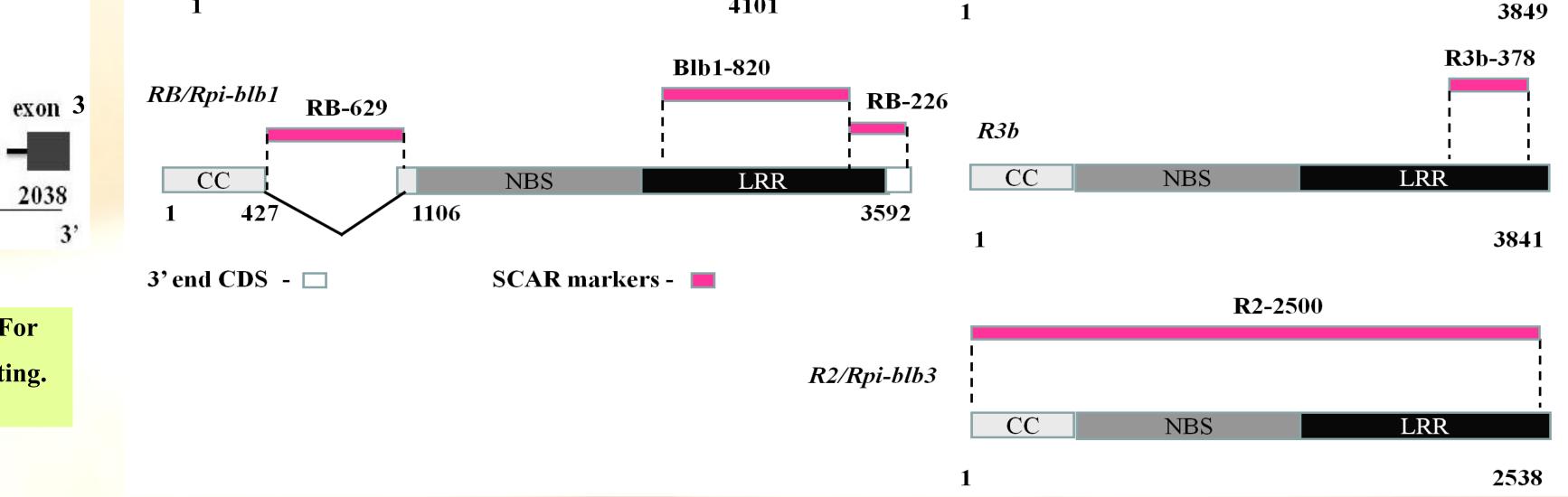
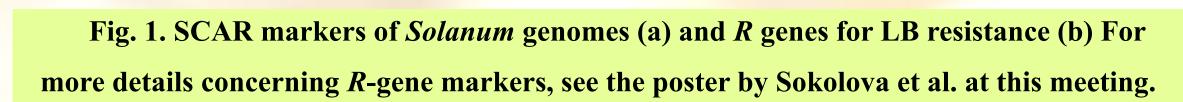
Pyramiding R genes: genomic and genetic profiles of late-blight resistant interspecies potato hybrids

EMIL E. KHAVKIN¹, OKSANA A. FADINA¹, EKATERINA A. SOKOLOVA¹, MARIYA P. BEKETOVA¹, POLINA E. DROBYAZINA¹, ELENA V. ROGOZINA², MARIYA A. KUZNETSOVA³, ISOL'DA M. YASHINA⁴, RICHARD W. JONES⁵, KENNETH L. DEAHL⁵


¹Institute of Agricultural Biotechnology, Moscow, Russia; e-mail: emil.khavkin@gmail.com
²N.I. Vavilov Institute of Plant Industry, St. Petersburg, Russia
³Institute of Phytopathology, Bol'shiye Vyazemy, Moscow region, Russia
⁴Institute of Potato Husbandry, Korenevo, Moscow region, Russia
⁵USDA-ARS *BARC*, Beltsville, MD, USA


The study is focused on two sets of interspecies hybrids, which comprise germplasms from three to ten *Solanum* species and manifest high and medium high late blight (LB) resistance in detached leaf assays. SCAR markers for *Solanum* genomes A, B and presumably, D derived from low-copy *LEAFY* and conserved ortholog sequences (COSII) and SCAR markers for LB resistance genes *R1*, *R2*, *R3a*, *R3b* and *RB/Rpi-blb1* were used to screen seventeen hybrids. The patterns of genome and *R*-gene markers were in most cases explained by the tentative profiles of wild *Solanum* species that were reportedly employed in breeding these hybrids. Stacking *R* genes in these hybrids significantly enhanced their LB resistance.

l		b			
1511	1982 SolB		R1-1205		R3a-1380
1561	SolD SolD	R1		R3a	
1701	SolA3	CC NBS	LRR	CC	BS LRR
1855	SolA2	1	4101	1	3849

SolA1

SolA

1765

1707

exon 2

5'

1466

 Table 1. Genome and R-gene patterns in interspecies hybrids bred in the Institute of Potato Husbandry (IPH)

 and the Institute of Plant Protection (IPP)

Hybrids	Pedigree (<i>Solanum</i> species)*	Solanum genomes	<i>R</i> genes for LB resistance established with SCAR markers	LB resis- tance**
IPH1	chc, cmm, dms, mga, tbr	A1-A3, D	R3a, R3b	MS/4
IPH2	adg, chc, dms, sem, tbr	A1-A3, D	<i>R3b</i>	S/3
IPH3	chc, cmm, dms, mga, tbr	A1-A3, D	R1, R3a, R3b	MR/7
IPH4	dms, tbr	A, D	R1, R2, R3a, R3b	MS/4
IPH5	adg, chc, dms, sto, tbr	A1, A3, D	R1, R2, R3a, R3b	MR/6
IPH6	adg, chc, dms, tbr	A1, A3, D	R2, R3a, R3b	MS/5
IPH7	adg, chc, cmm, dms, edn, mga, ryb=phu, tbr	A, A1, A3, D	R2, R3a, R3b	MR/6
IPH8	dms, tbr	A, A1, A3, D	<i>R2, R3b</i>	MS/5
IPH9	dms, tbr	A, A1, A3, D	R1, R2, R3a, R3b	R/8
IPP-10	adg, dms, mcd, plt=sto, tbr, ver	A1-A3, D	R2, R3a, R3b, RB/Rpi-blb1	MS/4
IPP-11	adg, dms, mcd, plt=sto, tbr, ver	A1-A3, B, D	R2, R3a, RB/Rpi-blb1	S/3
IPP-12	adg, ber, dms, mcd, plt = sto, pnt, tbr, ver	A, A1, A3, D	R2, R3a, RB/Rpi-blb1	MR/6
IPP-13	adg, dms, pnt, tbr	A, A1, A3, D	R2, R3a	MS/5
IPP-14	adg, ber, dms, mcd, plt=sto, pnt, tbr, ver	A1-A3, B, D	R2, R3a	MS/4
IPP-15	adg, ber, dms, mcd, phu, plt=sto, pnt, tbr, ver, vrn	A1-A3, B, D	R2, R3a, RB/Rpi-blb1	MR/6.5
IPP-16	adg, ber, dms, mcd, plt=sto, tbr	A1-A3, D	R1, R2, R3a, RB/Rpi-blb1	MR/7
IPP-18	dms, mcd, pnt, tbr	A1, A2, D	R1, R2, R3a	MS/4
	·	Standa	rd varieties	
Alpha	tbr	Α	none	S/3
Bintje	tbr	Α	none	S/3
Eeertstellung	tbr	Α	none	S/3
Robijn	tbr	Α	none	MS/4
Escort	dms, tbr	A, D	R2, R3a, R3b	MR/7
Sarpo Mira	dms?, tbr	A, D	<i>R3a, R3b</i>	R/8

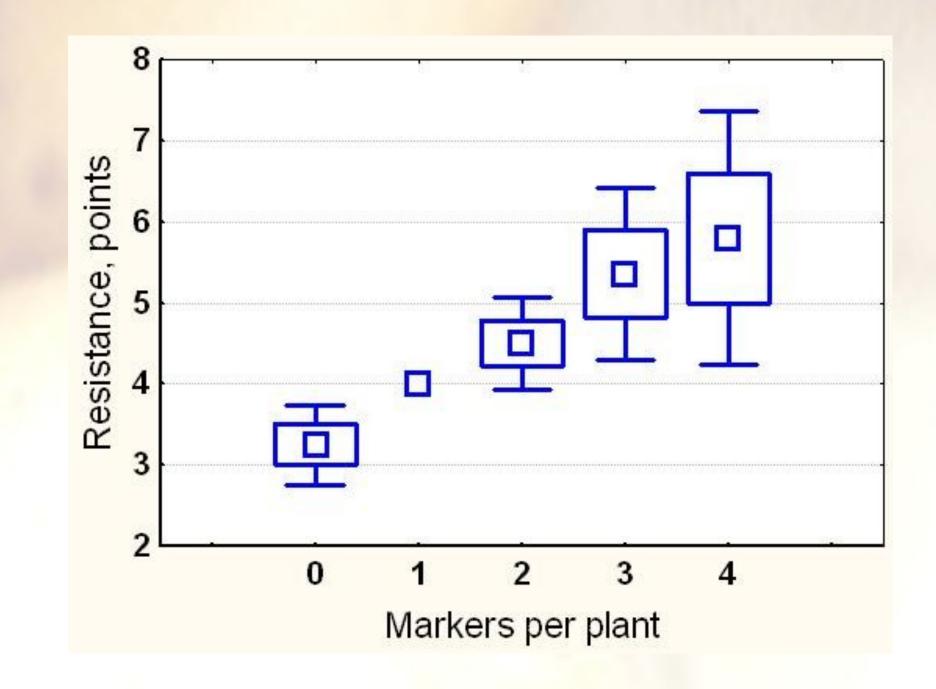
 Table 2. Some wild Solanum species reported in pedigrees of interspecies potato hybrids

Series	Species	Genor	nes established	<i>R</i> genes established by mo- lecular studies**	
		by classical ge- nome analysis	by molecular tech- nologies*		
Tuberosa	S. berthaultii		A1A1, A3A3	R1, R3b	
	S. microdontum	AA	A1A1, A3A3	R1, R3a, Rpi-mcd1	
	S. verrucosum	AA	AA, A1A1	R3b, RBver	
Longipedicellata	S. stoloniferum	AABB	AABB, A1A1BB	R1, R2/Rpi-blb3, R3a, R3b, Rpi-blb1	
Demissa	S. demissum	AADDD'D', A1A4[B,C,D]	AAPPPP, AABB, A1A1D	R1, R2, R3a, R3b	
Bulbocastana	S. bulbocastanum	AbAb	BB	R2/Rpi-blb3, R3a, R3b, Rpi- blb1, Rpi-blb2, RB-bt1	
Pinnatisecta	S. pinnatisectum	АріАрі	BpiBpi, BB	R2, R3a, R3b	

*Abbreviations of Solanum species. adg - S. andigenum, ber - S. berthaultii, chc - S. chacoense, cmm - S. commersonii, dms - S. demissum, edn - S. edinense, mcd – S. microdontum, mga - S. megistacrolobum, phu – S. phureja, plt - S. polytrichon = S. stoloniferum, pnt - S. pinnatisectum, ryb - S. rybinii = S. phureja, sem – S. semi-demissum, sto - S. stoloniferum; tbr - S. tuberosum, ver - S. verrucosum, vrn – S. vernei.

**Grades/points of LB resistance in detached leaf assays: R, resistant (points 8-9), MR, moderately resistant (points 6-7), MS, moderately susceptible (points 4-5), S, susceptible (points ≤3).

Two sets of interspecies hybrids comprising germplasms from three to ten *Solanum* species were developed


*Compiled from [1, 3].

****** For more details, see posters by Fadina et al. and by Sokolova et al. at this meeting.

Table 3. LB resistance of potato hybrids as affected by pyramiding the *R* genes

<i>R</i> -gene markers per	Groups of genotypes	Average resistance, points*
plant		
0	Standard cultivars free of wild <i>Solanum</i> germplasm Alpha,	3.3
0		5.5
	Bintje, Eeertstellung, Robijn	
1	IPH2	4
-		
2	IPH1, IPH8, IPP13, IPP14	4.5
-		
3	IPH3, IPH6, IPH7, IPP1, IPP13, IPP15, IPP18	5.4
5		3.4
<u>A</u>	IDIIA IDIIS IDIIA IDD1A IDD1A	5 9
4	IPH4, IPH5, IPH9, IPP19, IPP16	5.8

*Detached-leaf assays.

in the Institute of Potato Husbandry (IPH) and the Institute of Plant Protection (IPP). These hybrids displayed high and medium high late blight (LB) resistance in field and laboratory trials and are prospective donors for breeding new cultivars of manifest and durable LB resistance.

We screened these hybrids with SCAR markers for *Solanum* genomes A, B and D developed from *LEAFY* intron 2 (Fig. 1a) [1] and COSII sequences of several *Solanum* species reported by Rodriguez et al. [2] and cloned by the authors. The profiles of CC-NBS-LRR genes for LB resistance (*R* genes) were assessed with SCAR markers specific for *R1*, *R2/Rpi-blb3*, *R3a*, *R3b*, and *RB/Rpi-blb1* (Fig. 1b).

The evidence for the interspecies potato hybrids (Table 1) agrees fairly well with the previously established profiles of genomes and *R* genes in the dominant wild *Solanum* species employed in breeding these hybrids (Table 2).

We also compared the patterns of R-gene markers in the interspecies potato hybrids with their assessed in detached leaf trials with highly virulent complex race isolate of *Phytophthora infestans*. Four standard potato cultivars devoid of the R genes served as a control group (Table 3). The correlation between the number of R-gene markers and the points of LB resistance was highly significant, with the Spearman's coefficient of 0.62 (Fig. 2). While the race-specific R genes are commonly held to be defeated by P infestans, our data support the concept that these genes, especially when stacked in one potato genotype, provide a discernible input to LB resistance [4].

Acknowledgements.

The authors thank T.V. Belyantseva, O.V. Makhan'ko and P.V. Voloshina who helped with experiments. The study was supported by the ISTC - ARS-USDA (project 3714p), the Ministry of Education and Science, Russian Federation (contract No.16. M04.12.0007), and the Russian Foundation for Basic Research (project 13-04-00163a).

Fig. 2. The effect of stacking R genes in interspecies potato hybrids on their LB resistance in detached-leaf assays.

REFERENCES

1. Drobyazina P.E., Khavkin E.E. *FLORICAULA/LEAFY* intron 2-based markers of wild *Solanum* species and genomes for introgression breeding. In *PPO-Special* Report Schepers H.T.A.M. (ed.) vol. 15, (2012): 187-192. Wagen-ingen, The Netherlands, DLO Foundation .

2. Rodriguez F. et al. Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evol. Biol., 2009, 9:191.

3. Rodríguez F., Spooner D.M. 2009. Nitrate reductase phylogeny of potato (*Solanum* sect. *Petota*) genomes with emphasis on the origins of the polyploid species. Syst. Bot., 2009, 34: 207-219.

4. Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet., 2013, 29: 248-256.